Simulation studies of three synchronous reluctance motor(SynRM)control strategies are presented:field-oriented control(FOC),direct torque control(DTC),and finite-set model-predictive control(FS-MPC).FOC uses linear co...Simulation studies of three synchronous reluctance motor(SynRM)control strategies are presented:field-oriented control(FOC),direct torque control(DTC),and finite-set model-predictive control(FS-MPC).FOC uses linear controllers and pulse-width modulation to control the fundamental components of the load voltages vectors.In contrast,DTC and FS-MPC are nonlinear strategies wherein the voltage vectors are directly generated in the absence of a modulator.Theoretical operating principles and control structures of these control strategies are presented.Moreover,a comparative analysis of the static and dynamic performance of the control strategies is conducted using Matlab/Simulink to identify their advantages and limitations.It is confirmed that each of the control strategies has merits and that all three of them satisfy the requirements of modern high-performance drives.展开更多
Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with ...Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
文摘Simulation studies of three synchronous reluctance motor(SynRM)control strategies are presented:field-oriented control(FOC),direct torque control(DTC),and finite-set model-predictive control(FS-MPC).FOC uses linear controllers and pulse-width modulation to control the fundamental components of the load voltages vectors.In contrast,DTC and FS-MPC are nonlinear strategies wherein the voltage vectors are directly generated in the absence of a modulator.Theoretical operating principles and control structures of these control strategies are presented.Moreover,a comparative analysis of the static and dynamic performance of the control strategies is conducted using Matlab/Simulink to identify their advantages and limitations.It is confirmed that each of the control strategies has merits and that all three of them satisfy the requirements of modern high-performance drives.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2023C03116).
文摘Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.