A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithos...A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686-930 ppm) and HREE contents, low Y(11.9-19.8 ppm) and Yb(1.08-1.52 ppm) contents, and they therefore have high Sr/Y(42-63) and La/Yb(24-36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K2O/Na2O ratios(0.57-0.81), low Mg O contents(0.77-3.06 wt%), low Mg# value(17-49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.展开更多
The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that ...The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.展开更多
The Mongol-Okhotsk Ocean,which has been closing gradually from the west to the east beginning since the Late Paleozoic,was an important part of the Central Asian Orogenic Belt.It influenced the tectonic framework of N...The Mongol-Okhotsk Ocean,which has been closing gradually from the west to the east beginning since the Late Paleozoic,was an important part of the Central Asian Orogenic Belt.It influenced the tectonic framework of Northeast Asia in the Mesozoic,especially the Late Mesozoic arc-basin system that is widely distributed in the Great Xing’an Range.However,the manner in which the Mongol-Okhotsk Ocean affected the sedimentary basin development remains poorly understood.To address this issue,we conducted U-Pb dating of detrital zircon deposited sedimentary basins of the central Great Xing’an Range.By examining the possible provenances of the detrital zircon and the structural controls of the basins,we found that a key sedimentary unit was deposited around Late Jurassic-Early Cretaceous.Its provenance was a felsic source in a back-arc setting of an active continental margin.The findings also suggest the existence of a unified geodynamic setting that affected the coeval development of basins in the northern Great Xing’an Range and the Yanshan fold-thrust belt along the northern margin of North China Craton.This research helps to better understand the complex tectonic processes which shaped the Northeast Asia during the Late Mesozoic.展开更多
Mongol-Okhotsk Orogenic Belt is the last main orogen that constructs modern tectonic framework of northeastern Asia. It has recorded the long-term evolution of the Mongol-Okhotsk Ocean(MOO) from its Early Paleozoic in...Mongol-Okhotsk Orogenic Belt is the last main orogen that constructs modern tectonic framework of northeastern Asia. It has recorded the long-term evolution of the Mongol-Okhotsk Ocean(MOO) from its Early Paleozoic initial opening,through the Late Paleozoic-Early Mesozoic subduction, to its Mesozoic final closure, leading to the amalgamation of the Siberian Craton(SIB) and North China-Amuria Block(NCC-AMB). Opening of the MOO can be traced to the early stage of the Early Paleozoic. Northward subduction of the Mongol-Okhotsk oceanic slab beneath the southern margin of the SIB initiated in the Silurian, whereas the southward subduction beneath the northern margin of the NCC-AMB started in the Late Devonian. The bidirectional subduction of the Mongol-Okhotsk oceanic slab resulted in pulse arc magmatism, with three main peaks in the earliest Carboniferous, Late Permian, and Late Triassic-Early Jurassic. In the Late Triassic, the collision between the AMB and Western Mongolian Blocks led to the bending of the Western Mongolian Blocks, which caused the initial closure of the MOO in its western segment. Due to the clockwise rotation of the SIB and counterclockwise rotation of the NCC-AMB, the MOO showed a scissor-like closure from west to east. The final closure of the MOO occurred in the Middle-Late Jurassic, which also resulted in the formation of the Mongol Orocline. Since then, the amalgamation of blocks in northeastern Asia has finished, and the northeastern Asian continent went into the intraplate evolutional stage.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc...The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In t...The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.展开更多
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and tem...In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.展开更多
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t...The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.展开更多
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy ...This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.展开更多
The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions.An integrated high-frequency ice-ocean observation system,including Acoustic Doppler Velocimete...The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions.An integrated high-frequency ice-ocean observation system,including Acoustic Doppler Velocimeter,Conductivity-Temperature-Depth Sensor,and Sea Ice Mass Balance Array(SIMBA),was deployed in the landfast ice region close to the Chinese Zhongshan Station in Antarctica.A sudden ocean warming of 0.14℃(p<0.01)was observed beneath early-frozen landfast ice,from(−1.60±0.03)℃during April 16-19 to(−1.46±0.07)℃during April 20-23,2021,which is the only significant warming event in the nearly 8-month records.The sudden ocean warming brought a double rise in oceanic heat flux,from(21.7±11.1)W/m^(2) during April 16-19 to(44.8±21.3)W/m^(2) during April 20-23,2021,which shifted the original growth phase at the ice bottom,leading to a 2 cm melting,as shown from SIMBA and borehole observations.Simultaneously,the slowdown of ice bottom freezing decreased salt rejection,and the daily trend of observed ocean salinity changed from+0.02 d^(-1) during April 16-19,2021 to+0.003 d^(-1) during April 20-23,2021.The potential reasons are increased air temperature due to the transit cyclones and the weakened vertical ocean mixing due to the tide phase transformation from semi-diurnal to diurnal.The high-frequency observations within the ice-ocean boundary layer enhance the comprehensive investigation of the ocean’s influence on ice evolution at a daily scale.展开更多
As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the...As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.展开更多
Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulat...Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.展开更多
Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increas...Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increased pCO_(2) levels,marine microalgae modulate their physiological responses to meet their energy and metabolic requirements.Nitrogen metabolism is a critical metabolic pathway,directly affecting the growth and reproductive capacity of marine microorganisms.Understanding the molecular mechanisms that regulate nitrogen metabolism in microalgae under OA conditions is therefore crucial.This study aimed to investi-gate how OA affects the expression profiles of key genes in the nitrogen metabolic pathway of the marine diatom Skeletonema costatum.Our findings indicate that OA upregulates key genes involved in the nitrogen metabolic pathway,specifically those related to nitrate assimilation and glutamate metabolism.Moreover,pCO_(2) has been identified as the predominant factor affecting the expression of these genes,with a more significant impact than pH variations in S.costatum.This research not only advances our understanding of the adaptive mechanisms of S.costatum in response to OA but also provides essential data for predicting the ecological consequences of OA on marine diatoms.展开更多
Basalts from the Late Carboniferous to Early Permian are extensively developed in the central Lhasa subterrane, southern Tibet. Studying the petrogenesis of these rocks may have implications for the late Paleozoic arc...Basalts from the Late Carboniferous to Early Permian are extensively developed in the central Lhasa subterrane, southern Tibet. Studying the petrogenesis of these rocks may have implications for the late Paleozoic arc magmatism along the central Lhasa subterrane uncovering more of the evolution of the Sumdo Paleo-Tethys Ocean and its dynamic mechanism. Basalt samples from the Luobadui Formation in the Leqingla area, NW of Linzhou City in the central Lhasa subterrane, southern Tibet exhibit arc-like geochemical signatures in a subduction-zone tectonic setting characterized by high Al_(2)O_(3) and low TiO_(2) contents, fractionated REE patterns with low Nb/La ratios and high LREE concentrations, and negative HFSE anomalies. Based on their higher Th/Ce, Nb/Zr, and lower Ba/Th, Pb/Nd ratios, slightly negative to positive ε_(Nd)(t) values, and the relatively high Sr-Pb isotopic compositions, these samples were probably derived from partial melting of a depleted mantle source of garnet + spinel lherzolite, metasomatized by subducted sediments around 297 Ma. Modeling of the trace elements indicates that these basalts experienced fractional crystallization of olivine, clinopyroxene and minor plagioclase during magma ascent and eruption. It is proposed that these Late Carboniferous–Early Permian basalts are associated with the northward subduction of the Sumdo Paleo-Tethys Ocean seafloor along the southern margin of the central Lhasa subterrane.展开更多
Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of effic...Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of efficient observation approach from both space and in situ for the coverage of Arctic sediment-laden sea ice.Thus,both spatial distribution and long-term changes in area fraction of such ice floes are still unclear.This study proposes a new classification method to extract Arctic sediment-laden sea ice on the basic of the difference in spectral characteristics between sediment-laden sea ice and clean sea ice in the visible band using the MOD09A1 data with the resolution of 500 m,and obtains its area fraction over the pan Arctic Ocean during 2000−2021.Compared with Landsat-8 true color verification images with a resolution of 30 m,the overall accuracy of our classification method is 92.3%,and the Kappa coefficient is 0.84.The impact of clouds on the results of recognition and spatiotemporal changes of sediment-laden sea ice is relatively small from June to July,compared to that in May or August.Spatially,sediment-laden sea ice mostly appears over the marginal seas of the Arctic Ocean,especially the continental shelf of Chukchi Sea and the Siberian seas.Associated with the retreat of Arctic sea ice extent,the total area of sediment-laden sea ice in June-July also shows a significant decreasing trend of 8.99×10^(4) km^(2) per year.The occurrence of sediment-laden sea ice over the Arctic Ocean in June-July leads to the reduce of surface albedo over the ice-covered ocean by 14.1%.This study will help thoroughly understanding of the role of sediment-laden sea ice in the evolution of Arctic climate system and marine ecological environment,as well as the heat budget and mass balance of sea ice itself.展开更多
With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growt...With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41872234 and 41340024)Self-determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources (Grant No. DBYZZ-18-08)Graduate Innovation Fund of Jilin University
文摘A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686-930 ppm) and HREE contents, low Y(11.9-19.8 ppm) and Yb(1.08-1.52 ppm) contents, and they therefore have high Sr/Y(42-63) and La/Yb(24-36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K2O/Na2O ratios(0.57-0.81), low Mg O contents(0.77-3.06 wt%), low Mg# value(17-49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.
基金conducted in the frame of the grant of the Ministry of Science and High Education of the Russian Federation No.075-15-2019-1883。
文摘The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.
基金supported by the National Natural Science Foundation of China(Nos.42130305 and 41872234).
文摘The Mongol-Okhotsk Ocean,which has been closing gradually from the west to the east beginning since the Late Paleozoic,was an important part of the Central Asian Orogenic Belt.It influenced the tectonic framework of Northeast Asia in the Mesozoic,especially the Late Mesozoic arc-basin system that is widely distributed in the Great Xing’an Range.However,the manner in which the Mongol-Okhotsk Ocean affected the sedimentary basin development remains poorly understood.To address this issue,we conducted U-Pb dating of detrital zircon deposited sedimentary basins of the central Great Xing’an Range.By examining the possible provenances of the detrital zircon and the structural controls of the basins,we found that a key sedimentary unit was deposited around Late Jurassic-Early Cretaceous.Its provenance was a felsic source in a back-arc setting of an active continental margin.The findings also suggest the existence of a unified geodynamic setting that affected the coeval development of basins in the northern Great Xing’an Range and the Yanshan fold-thrust belt along the northern margin of North China Craton.This research helps to better understand the complex tectonic processes which shaped the Northeast Asia during the Late Mesozoic.
基金supported by the National Natural Science Foundation of China (Grant No. 92155203)。
文摘Mongol-Okhotsk Orogenic Belt is the last main orogen that constructs modern tectonic framework of northeastern Asia. It has recorded the long-term evolution of the Mongol-Okhotsk Ocean(MOO) from its Early Paleozoic initial opening,through the Late Paleozoic-Early Mesozoic subduction, to its Mesozoic final closure, leading to the amalgamation of the Siberian Craton(SIB) and North China-Amuria Block(NCC-AMB). Opening of the MOO can be traced to the early stage of the Early Paleozoic. Northward subduction of the Mongol-Okhotsk oceanic slab beneath the southern margin of the SIB initiated in the Silurian, whereas the southward subduction beneath the northern margin of the NCC-AMB started in the Late Devonian. The bidirectional subduction of the Mongol-Okhotsk oceanic slab resulted in pulse arc magmatism, with three main peaks in the earliest Carboniferous, Late Permian, and Late Triassic-Early Jurassic. In the Late Triassic, the collision between the AMB and Western Mongolian Blocks led to the bending of the Western Mongolian Blocks, which caused the initial closure of the MOO in its western segment. Due to the clockwise rotation of the SIB and counterclockwise rotation of the NCC-AMB, the MOO showed a scissor-like closure from west to east. The final closure of the MOO occurred in the Middle-Late Jurassic, which also resulted in the formation of the Mongol Orocline. Since then, the amalgamation of blocks in northeastern Asia has finished, and the northeastern Asian continent went into the intraplate evolutional stage.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42076202, 42122046, 42206208 and 42261134536)the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC shiptime Sharing Projects 42149910+7 种基金the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of SciencesNational Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technologyfunded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on its commercial vessels
文摘The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42262026,42072259).
文摘The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
基金supported by the National Natural Science Foundation of China(Nos.42276239 and 41941012)the National Key R&D Program of China(No.2019YFC1509101)the Fundamental Research Funds for the Central Universities(No.202165005).
文摘In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.
基金supported by the Independent Research Foundation of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. SML2021SP306)National Natural Science Foundation of China (Grant Nos. 41941007, 41806216, 41876220, and 62177028)+2 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20211015)China Postdoctoral Science Foundation (Grant Nos. 2019T120379 and 2018M630499)the Talent start-up fund of Nanjing Xiaozhuang University (Grant No. 4172111)。
文摘The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802)the National Natural Science Foundation of China(Nos.42306219 and 42106020)+3 种基金the Tai Shan Scholar Pro-gram(Grant No.tstp20231237)Part of computing resources are financially supported by Laoshan Laboratory(No.LSKJ202300301)Dr.Eric P.CHASSIGNET is supported by the CAS President’s International Fellowship Initiative(PIFI)NOAA Climate Program Office MAPP Program(Award NA15OAR4310088).
文摘This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.
基金The National Natural Science Foundation of China under contract Nos 42276251,42211530033,and 41876212the Taishan Scholars Program.
文摘The ocean conditions beneath the ice cover play a key role in understanding the sea ice mass balance in the polar regions.An integrated high-frequency ice-ocean observation system,including Acoustic Doppler Velocimeter,Conductivity-Temperature-Depth Sensor,and Sea Ice Mass Balance Array(SIMBA),was deployed in the landfast ice region close to the Chinese Zhongshan Station in Antarctica.A sudden ocean warming of 0.14℃(p<0.01)was observed beneath early-frozen landfast ice,from(−1.60±0.03)℃during April 16-19 to(−1.46±0.07)℃during April 20-23,2021,which is the only significant warming event in the nearly 8-month records.The sudden ocean warming brought a double rise in oceanic heat flux,from(21.7±11.1)W/m^(2) during April 16-19 to(44.8±21.3)W/m^(2) during April 20-23,2021,which shifted the original growth phase at the ice bottom,leading to a 2 cm melting,as shown from SIMBA and borehole observations.Simultaneously,the slowdown of ice bottom freezing decreased salt rejection,and the daily trend of observed ocean salinity changed from+0.02 d^(-1) during April 16-19,2021 to+0.003 d^(-1) during April 20-23,2021.The potential reasons are increased air temperature due to the transit cyclones and the weakened vertical ocean mixing due to the tide phase transformation from semi-diurnal to diurnal.The high-frequency observations within the ice-ocean boundary layer enhance the comprehensive investigation of the ocean’s influence on ice evolution at a daily scale.
基金Supported by the National Natural Science Foundation of China(Nos.42090044,42376175,U2006211)the Marine S&T Fund of Laoshan Laboratory(Qingdao)(No.LSKJ202204302)。
文摘As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.
文摘Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.
基金supported by the Scientific and Technological Innovation Project of the Laoshan Laboratory(No.LSKJ202203700)the National Key Research and Development Program of China(No.2022YFC3105202)the National Natural Science Foundation of China(No.41976133).
文摘Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increased pCO_(2) levels,marine microalgae modulate their physiological responses to meet their energy and metabolic requirements.Nitrogen metabolism is a critical metabolic pathway,directly affecting the growth and reproductive capacity of marine microorganisms.Understanding the molecular mechanisms that regulate nitrogen metabolism in microalgae under OA conditions is therefore crucial.This study aimed to investi-gate how OA affects the expression profiles of key genes in the nitrogen metabolic pathway of the marine diatom Skeletonema costatum.Our findings indicate that OA upregulates key genes involved in the nitrogen metabolic pathway,specifically those related to nitrate assimilation and glutamate metabolism.Moreover,pCO_(2) has been identified as the predominant factor affecting the expression of these genes,with a more significant impact than pH variations in S.costatum.This research not only advances our understanding of the adaptive mechanisms of S.costatum in response to OA but also provides essential data for predicting the ecological consequences of OA on marine diatoms.
基金the National Key Research and Development Program of China (Grant No. 2022YFF0800903)the National Natural Science Foundation of China (Grant Nos. 42302107, 92162322, 42261144669, 41922022, 42003036)+4 种基金the China Geological Survey (Grant Nos. DD20243512, DD20230008)the National Postdoctoral Research Program of China (Grant No. GZC20232489)the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2021QZKK0304)Xing Dian Youth Talent Plan of Yunnan Province (Grant No. XDYC-QNRC-2022-0136)the UNESCO: IUGS IGCP-662 Program。
文摘Basalts from the Late Carboniferous to Early Permian are extensively developed in the central Lhasa subterrane, southern Tibet. Studying the petrogenesis of these rocks may have implications for the late Paleozoic arc magmatism along the central Lhasa subterrane uncovering more of the evolution of the Sumdo Paleo-Tethys Ocean and its dynamic mechanism. Basalt samples from the Luobadui Formation in the Leqingla area, NW of Linzhou City in the central Lhasa subterrane, southern Tibet exhibit arc-like geochemical signatures in a subduction-zone tectonic setting characterized by high Al_(2)O_(3) and low TiO_(2) contents, fractionated REE patterns with low Nb/La ratios and high LREE concentrations, and negative HFSE anomalies. Based on their higher Th/Ce, Nb/Zr, and lower Ba/Th, Pb/Nd ratios, slightly negative to positive ε_(Nd)(t) values, and the relatively high Sr-Pb isotopic compositions, these samples were probably derived from partial melting of a depleted mantle source of garnet + spinel lherzolite, metasomatized by subducted sediments around 297 Ma. Modeling of the trace elements indicates that these basalts experienced fractional crystallization of olivine, clinopyroxene and minor plagioclase during magma ascent and eruption. It is proposed that these Late Carboniferous–Early Permian basalts are associated with the northward subduction of the Sumdo Paleo-Tethys Ocean seafloor along the southern margin of the central Lhasa subterrane.
基金The National Key Research and Development Program of China under contract No.2021YFC2803304the National Natural Science Foundation of China under contract No.42325604+2 种基金the Program of Shanghai Academic/Technology Research Leader under contract No.22XD1403600the Fundamental Research Funds for the Central Universities under contract No.2042024kf0037the Fund of Key Laboratory for Polar Science,Ministry of Natural Resources,Polar Research Institute of China,under contract No.KP202004.
文摘Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of efficient observation approach from both space and in situ for the coverage of Arctic sediment-laden sea ice.Thus,both spatial distribution and long-term changes in area fraction of such ice floes are still unclear.This study proposes a new classification method to extract Arctic sediment-laden sea ice on the basic of the difference in spectral characteristics between sediment-laden sea ice and clean sea ice in the visible band using the MOD09A1 data with the resolution of 500 m,and obtains its area fraction over the pan Arctic Ocean during 2000−2021.Compared with Landsat-8 true color verification images with a resolution of 30 m,the overall accuracy of our classification method is 92.3%,and the Kappa coefficient is 0.84.The impact of clouds on the results of recognition and spatiotemporal changes of sediment-laden sea ice is relatively small from June to July,compared to that in May or August.Spatially,sediment-laden sea ice mostly appears over the marginal seas of the Arctic Ocean,especially the continental shelf of Chukchi Sea and the Siberian seas.Associated with the retreat of Arctic sea ice extent,the total area of sediment-laden sea ice in June-July also shows a significant decreasing trend of 8.99×10^(4) km^(2) per year.The occurrence of sediment-laden sea ice over the Arctic Ocean in June-July leads to the reduce of surface albedo over the ice-covered ocean by 14.1%.This study will help thoroughly understanding of the role of sediment-laden sea ice in the evolution of Arctic climate system and marine ecological environment,as well as the heat budget and mass balance of sea ice itself.
基金funded by the Ministry of Agriculture of the People’s Republic of China (No.CARS-49)。
文摘With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.