期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
A 330-500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits 被引量:2
1
作者 任田昊 张勇 +4 位作者 延波 徐锐敏 杨成樾 周静涛 金智 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期31-34,共4页
A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteri... A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated. 展开更多
关键词 InP InGaAs A 330-500 GHz Zero-Biased Broadband Tripler Based on Terahertz monolithic integrated circuits dBm SBD
下载PDF
A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology 被引量:2
2
作者 李欧鹏 张勇 +4 位作者 徐锐敏 程伟 王元 牛斌 陆海燕 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期448-452,共5页
Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heteroju... Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. 展开更多
关键词 terahertz amplifier InP double heterojunction bipolar transistor inverted microstrip line monolithic integrated circuit
下载PDF
Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor
3
作者 Lu-Wei Qi Jin Meng +5 位作者 Xiao-Yu Liu Yi Weng Zhi-Cheng Liu De-Hai Zhang Jing-Tao Zhou Zhi Jin 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期308-314,共7页
The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ... The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance. 展开更多
关键词 C-V characteristic physics-based model terahertz monolithic integrated circuit(TMIC) Schottky barrier varactor
下载PDF
Design of Si-bipolar Monolithic Main Amplifier IC for Optical Fiber Receivers 被引量:1
4
作者 ZHANGYaqi ZHAOHongmin 《Semiconductor Photonics and Technology》 CAS 1999年第1期51-57,共7页
A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main ampl... A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed. 展开更多
关键词 Digital Optical Fiber Receiver Main Amplifier monolithic integrated circuit
下载PDF
A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz 被引量:1
5
作者 黄杰 赵倩 +2 位作者 杨浩 董军荣 张海英 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期451-455,共5页
The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, w... The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit. 展开更多
关键词 GaAs planar Schottky diode phase shifter right-handed nonlinear transmission lines monolithic microwave integrated circuit
下载PDF
Technology challenges for monolithically integrated waveguide demultiplexers
6
作者 Lech Wosinski Liu Liu +1 位作者 Ning Zhu Lars Thylen 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第4期315-318,共4页
A short overview of integrated waveguide demultiplexers for different applications in future highly integrated optical communication systems is presented. Some fabricated devices based on amorphous silicon nanowire te... A short overview of integrated waveguide demultiplexers for different applications in future highly integrated optical communication systems is presented. Some fabricated devices based on amorphous silicon nanowire technology are described. 展开更多
关键词 Communication systems DEMULTIPLEXING monolithic integrated circuits Optical communication WAVEGUIDES
原文传递
A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
7
作者 Huali Zhu Yong Zhang +4 位作者 Kun Qu Haomiao Wei Yukun Li Yuehang Xu Ruimin Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期329-333,共5页
This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the ... This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks. 展开更多
关键词 coupled-GCPW InP technology terahertz monolithic integrated circuits(TMICs) Wilkinson power combiner
下载PDF
Design of 35 GHz 1 Watt GaAs pHEMT Power Amplifier MMIC
8
作者 Bo Hong Wen-Bin Dou 《Journal of Electronic Science and Technology》 CAS 2011年第1期81-84,共4页
By using 0.15 μm GaAs pHEMT (pseudomorphic high electron mobility transistor) technology,a design of millimeter wave power amplifier microwave monolithic integrated circuit (MMIC) is presented.With careful optimi... By using 0.15 μm GaAs pHEMT (pseudomorphic high electron mobility transistor) technology,a design of millimeter wave power amplifier microwave monolithic integrated circuit (MMIC) is presented.With careful optimization on circuit structure,this two-stage power amplifier achieves a simulated gain of 15.5 dB with fluctuation of 1 dB from 33 GHz to 37 GHz.A simulated output power of more than 30 dBm in saturation can be drawn from 3 W DC supply with maximum power added efficiency (PAE) of 26%.Rigorous electromagnetic simulation is performed to make sure the simulation results are credible.The whole chip area is 3.99 mm2 including all bond pads. 展开更多
关键词 GaAs pHEMT (pseudomorphic high electron mobility transistor) millimeter wave microwave monolithic integrated circuit power adde defficiency power amplifier.
下载PDF
Broadband MMIC Power Amplifier for C-X-Ku-Band Applications
9
作者 张书敬 杨瑞霞 +2 位作者 张玉清 高学邦 杨克武 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第6期829-832,共4页
A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,bi... A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,biasing,and DC block circuitry included on the chip.Thepower amplifier has an average power gain of 19dB over 6~18GHz.At operation frequenciesfrom 6 to 18GHz,the output power is above 33.3dBm,and the maximum output power of the MMICis 34.7dBm at 10Ghz.The input return loss is less than-10db and the out-put return is lessthan-6dB over operating frequency.This power amplifier has,to our knowledge,the best powergain flatness reported at C-X-Ku-band applications. 展开更多
关键词 High electron mobility transistors monolithic microwave integrated circuits Semiconducting gallium arsenide
下载PDF
Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
10
作者 黄杰 顾雯雯 赵倩 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期500-505,共6页
A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed non- linear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) techn... A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed non- linear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) technology. The structure parameters of CRLH NLTLs, e.g. host transmission line, rectangular spiral inductor, and nonlinear capacitor, have a great impact on the second harmonic performance enhancement in terms of second harmonic frequency, output power, and conversion efficiency. It has been experimentally demonstrated that the second harmonic frequency is deter- mined by the anomalous dispersion of CRLH NLTLs and can be significantly improved by effectively adjusting these structure parameters. A good agreement between the measured and simulated second harmonic performances of Ka-band CRLH NLTLs frequency multipliers is successfully achieved, which further validates the design approach of frequency multipliers on CRLH NLTLs and indicates the potentials of CRLH NLTLs in terms of the generation of microwave and millimeter-wave signal source. 展开更多
关键词 GaAs planar Schottky diode frequency multiplier composite fight/left-handed transmission line monolithic microwave integrated circuit
下载PDF
Development trends in silicon photonics 被引量:3
11
作者 周治平 涂芝娟 +4 位作者 尹兵 谈卫 余丽 易华祥 王兴军 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第1期72-77,共6页
Silicon photonics has become one of the major technologies in this very information age. It has been intensively pursued by researchers and entrepreneurs all over the world in recent years. Achieving the large scale s... Silicon photonics has become one of the major technologies in this very information age. It has been intensively pursued by researchers and entrepreneurs all over the world in recent years. Achieving the large scale silicon photonic integration, particularly monolithic integration, is the final goal so that high density data communication will become much cheaper, more reliable, and less energy consuming. Comparing with the developed countries, China may need to invest more to develop top down nanoscale integration capability (more on processing technology) to sustain the development in silicon photonics and to elevate its own industry structure. 展开更多
关键词 monolithic integrated circuits PHOTONICS
原文传递
Fabrication of an electro-absorption modulated distributed feedback laser by quantum well intermixing with etching ion-implantation buffer layer
12
作者 韩良顺 梁松 +1 位作者 朱洪亮 王圩 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第8期50-53,共4页
We report the fabrication details of a monolithically integrated electro-absorption modulated distributed feedback laser (EML) based on the ion-implantation induced quantum well intermixing (QWI) technique. To wel... We report the fabrication details of a monolithically integrated electro-absorption modulated distributed feedback laser (EML) based on the ion-implantation induced quantum well intermixing (QWI) technique. To well-preserve material quality in the laser region, thermal-oxide SiO2 is deposited before implantation and the ion-implantation buffer layer is etched before annealing. Thirteen pairs quantum well and barrier are employed to compensate deterioration of the modulator's extinction ratio (ER) caused by the QWI process. The fabricated EML exhibits an 18 dB static ER at 5 V reverse bias. The 3 dB small signal modulation band- width of modulator is over 13.5 GHz indicating that this EML is a suitable light source for over 16 Gb/s optical transmission links. 展开更多
关键词 Buffer layers Distributed feedback lasers FABRICATION Ion implantation IONS Light modulators Light sources Light transmission Modulators monolithic integrated circuits Semiconductor quantum wells
原文传递
Multi-channel DFB laser array fabricated by SAG with optimized epitaxy conditions
13
作者 张灿 梁松 +2 位作者 马丽 韩良顺 朱洪亮 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第4期22-25,共4页
Selective area growth (SAG) is performed to fabricate monolithically integrated distributed feedback (DFB) laser array by adjusting the width of a SiO2 mask. A strain-compensated-barrier structure is adopted to re... Selective area growth (SAG) is performed to fabricate monolithically integrated distributed feedback (DFB) laser array by adjusting the width of a SiO2 mask. A strain-compensated-barrier structure is adopted to reduce the accumulated strain and improve the quality of multi-quantum well materials. Varying the strip width of the SAG masks, the DFB laser array with an average channel spacing of 1.47 nm is demonstrated by a conventional holographic method with constant-pitch grating. The threshold current from 14 to 18 mA and over 35-dB side mode suppression ratio (SMSR) are obtained for all DFB lasers in the array. 展开更多
关键词 monolithic integrated circuits
原文传递
Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology 被引量:1
14
作者 Ge-liang YANG Zhi-gong WANG +3 位作者 Zhi-qun LI Qin LI Fa-en LIU Zhu LI 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第4期288-295,共8页
A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside c... A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of -15- -12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28 35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred PIdB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm^2 including pads. 展开更多
关键词 Complementary metal-oxide-semiconductor (CMOS) Sub-harmonically pumped resistive mixer (SHPRM) Mar-chand balance-to-unbalance (balun) Millimeter wave (MMW) monolithic microwave integrated circuit (MMIC)
原文传递
A high power active circulator using GaN MMIC power amplifiers
15
作者 顾黎明 车文荃 +1 位作者 Fan-Hsiu Huang Hsien-Chin Chiu 《Journal of Semiconductors》 EI CAS CSCD 2014年第11期114-118,共5页
This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers. The power amplifiers were designed and fabricated in a standard 0.35... This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers. The power amplifiers were designed and fabricated in a standard 0.35-μm AlGaN/GaN HEMT technology, and combined with three traditional power dividers on FR4 using bonding wires. Due to the isolation of power dividers, the isolation between three ports is achieved; meanwhile, due to the unidirectional characteristics of the power amplifiers, the nonreciprocal transfer characteristic of the circulator is realized. The measured insertion gain of the proposed active circulator is about 2-2.7 dB at the center frequency of 2.4 GHz, the isolation between three ports is better than 20 dB over 1.2-3.4 GHz, and the output power of the designed active circulator achieves up to 20.1-21.2 dBm at the center frequency. 展开更多
关键词 hybrid gallium nitride (GaN) monolithic microwave integrated circuit (MMIC) active circulator power amplifier power divider
原文传递
A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology
16
作者 Fa-en LIU Zhi-gong WANG +3 位作者 Zhi-qun LI Qin LI Lu TANG Ge-liang YANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第12期1183-1189,共7页
We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is... We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm. 展开更多
关键词 CMOS Injection-locked frequency divider(ILFD) Millimeter wave Wide locking range monolithic microwave integrated circuit(MMIC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部