The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping en...The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping energies and repulsive interactions are obtained. Thereby,Mott-insulator-superfluid( MISF)phase transition boundaries are determined. Our results show that tunneling effects between two chains provide additional channels for particles hopping between corresponding optical lattice sites of different chains,which makes easier for systems to transit from MI to SF phase. The two-site parity function is also utilized to investigate the properties of the system near the quantum phase transit point.We found that the increase of inter-chain hopping will reinforce the tunneling effects between two chains,and reduce the intrachain tunneling effects within the same chain.展开更多
Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quan...Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic–insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.展开更多
We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while l...We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degener- ate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting A. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.展开更多
A simple finite element implementation of the Mott model for fragmentation of a thin walled ring has been implemented and used to explore the effect of local variations in fracture strain around the ring.The model has...A simple finite element implementation of the Mott model for fragmentation of a thin walled ring has been implemented and used to explore the effect of local variations in fracture strain around the ring.The model has successfully reproduced the fragment size distributions previously reported,which follow a characteristic“Mott distribution”form,providing sufficient(1000)simulations are run.It has been shown that this form is retained even when there are large differences in the random distribution of fracture strains or a different choice of function used to describe the fracture strain scatter.In these cases,the strain rate has a much stronger effect than fracture strain distribution the on the average fragment size and fragment distribution.However,for cases where there are a small number of local defects that strongly reduce the fracture strain at certain locations around the ring,the predicted fragment size distribution develops a bimodal character.This is also the case for large but gradual variations in fracture strain with position around the ring.The results have implications for cases where a small number of large pre-existing defects exist,or processing has led to macrozones in the microstructure.The utility of a simple fast running model to study these cases is discussed.展开更多
New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed lar...New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed large L/D multi-region model links three-dimensional axisymmetric high strain high strain-rate hydrocode analyses with the conventional set of Picatinny Arsenal FRAGmentation(PAFRAG)simulation routines.The standard PAFRAG modeling technique is based on the Mott's theory of break-up of idealized cylindrical"ring-bombs",in which the length of the average fragment is a function of the radius and velocity of the shell at the moment of break-up,and the mechanical properties of the metal.In the newly developed multi-region model,each of the shell region,the break-up is assumed to occur instantaneously,whereas the entire shell is modeled to fragment at multiple times,according to the number of the regions considered.According to PAFRAG methodology,the required input for both the natural and the controlled fragmentation models including the geometry and the velocity of the shell at moment of break-up had been provided from the hydrocode analyses and validated with available experimental data.The newly developed large L/D multi-region PAFRAG model has been shown to accurately reproduce available experimental fragmentation data.展开更多
基金Sponsored by the National Natural Science Foundation China(Grant No.11504106)the Special Foundation for Theoretical Physics Research Program of China(Grant No.11447167)
文摘The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping energies and repulsive interactions are obtained. Thereby,Mott-insulator-superfluid( MISF)phase transition boundaries are determined. Our results show that tunneling effects between two chains provide additional channels for particles hopping between corresponding optical lattice sites of different chains,which makes easier for systems to transit from MI to SF phase. The two-site parity function is also utilized to investigate the properties of the system near the quantum phase transit point.We found that the increase of inter-chain hopping will reinforce the tunneling effects between two chains,and reduce the intrachain tunneling effects within the same chain.
基金Project supported by Inner Mongolia Natural Science Foundation,China(Grant No.06021601)
文摘Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic–insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.
基金Project supported by the National Natural Science Foundation of China(Grant No.2011CBA00108)the National Basic Research Program of China(Grant No.2013CB921700)
文摘We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degener- ate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting A. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.
基金funding through the LightForm program grant EP/R001715/1
文摘A simple finite element implementation of the Mott model for fragmentation of a thin walled ring has been implemented and used to explore the effect of local variations in fracture strain around the ring.The model has successfully reproduced the fragment size distributions previously reported,which follow a characteristic“Mott distribution”form,providing sufficient(1000)simulations are run.It has been shown that this form is retained even when there are large differences in the random distribution of fracture strains or a different choice of function used to describe the fracture strain scatter.In these cases,the strain rate has a much stronger effect than fracture strain distribution the on the average fragment size and fragment distribution.However,for cases where there are a small number of local defects that strongly reduce the fracture strain at certain locations around the ring,the predicted fragment size distribution develops a bimodal character.This is also the case for large but gradual variations in fracture strain with position around the ring.The results have implications for cases where a small number of large pre-existing defects exist,or processing has led to macrozones in the microstructure.The utility of a simple fast running model to study these cases is discussed.
文摘New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed large L/D multi-region model links three-dimensional axisymmetric high strain high strain-rate hydrocode analyses with the conventional set of Picatinny Arsenal FRAGmentation(PAFRAG)simulation routines.The standard PAFRAG modeling technique is based on the Mott's theory of break-up of idealized cylindrical"ring-bombs",in which the length of the average fragment is a function of the radius and velocity of the shell at the moment of break-up,and the mechanical properties of the metal.In the newly developed multi-region model,each of the shell region,the break-up is assumed to occur instantaneously,whereas the entire shell is modeled to fragment at multiple times,according to the number of the regions considered.According to PAFRAG methodology,the required input for both the natural and the controlled fragmentation models including the geometry and the velocity of the shell at moment of break-up had been provided from the hydrocode analyses and validated with available experimental data.The newly developed large L/D multi-region PAFRAG model has been shown to accurately reproduce available experimental fragmentation data.