This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated depos...This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.展开更多
Debris flows are the main geological hazards in the Moxi basin, which locate on the eastern slope of the M.T Minya Konka, Sichuan province, southwestern of China. The location of 49 debris flow gullies have been ident...Debris flows are the main geological hazards in the Moxi basin, which locate on the eastern slope of the M.T Minya Konka, Sichuan province, southwestern of China. The location of 49 debris flow gullies have been identified and mapped from the 1:50000 scale through the extensive field survey across the Moxi basin. The historical events data were collected from documents and visit to local residents, and were used as the basis for frequency analysis. Anymore, topographic features of debris flow gullies have been calculated using GIS software. The analysis showed that 73.5% of the debris flow gullies are not randomly distributed but concentrated directly adjacent to the western side of Moxi fault, and only 26.5% are located to the eastern side. The numbers, frequency, catchments area, gully length, gully slope ratio of these debris flow gullies in Moxi basin were affected by the glaciations and geological activity. The results show potential activity of debris flow in Moxi basin is strong, this research is essential to debris flow hazards mitigation.展开更多
The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature t...The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.展开更多
By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reser...By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective.展开更多
基金funded by The China Geological Survey (Grant No. 12120113010200)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011FY110100-5)The National Natural Science Foundation of China (Grant No. 41101086)
文摘This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.
文摘Debris flows are the main geological hazards in the Moxi basin, which locate on the eastern slope of the M.T Minya Konka, Sichuan province, southwestern of China. The location of 49 debris flow gullies have been identified and mapped from the 1:50000 scale through the extensive field survey across the Moxi basin. The historical events data were collected from documents and visit to local residents, and were used as the basis for frequency analysis. Anymore, topographic features of debris flow gullies have been calculated using GIS software. The analysis showed that 73.5% of the debris flow gullies are not randomly distributed but concentrated directly adjacent to the western side of Moxi fault, and only 26.5% are located to the eastern side. The numbers, frequency, catchments area, gully length, gully slope ratio of these debris flow gullies in Moxi basin were affected by the glaciations and geological activity. The results show potential activity of debris flow in Moxi basin is strong, this research is essential to debris flow hazards mitigation.
基金Supported by the National Natural Science Foundation of China(41572133,41372141)
文摘The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.
基金Supported by CNPC Science and Technology Major Project(2016ZX052,2016ZX05015-003)
文摘By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective.