Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filte...Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filter and accumulated variance analysis methods, the spatial and temporal patterns of the climatic change in this region were analyzed. The main findings can be summarized as follows: (1) There is obvious ascending tendency for the interannual change of air temperature in Mt. Qomolangma region and the ascending tendency of Tingri, the highest station, is the most significant. The rate of increasing air temperature is 0.234℃/decade in Mt. Qomolangma region, 0.302 ℃/decade in Tingxi. The air temperature increases more strongly in non-growing season. (2) Compared with China and the global average, the warming of Mt. Qomolangma region occurred early. The linear rates of temperature increase in Mt. Qomolangma region exceed those for China and the global average in the same period. This is attributed to the sensitivity of mountainous regions to climate change. (3) The southern and northern parts of Mt. Qomolangma region are quite different in precipitation changes. Stations in the northern part show increasing trends but are not statistically significant. Nyalam in the southern part shows a decreasing trend and the sudden decreasing of precipitation occurred in the early 1990s. (4) Compared with the previous studies, we find that the warming of Mt. Qomolangma high-elevation region is most significant in China in the same period. The highest automatic meteorological comprehensive observation station in the world set up at the base camp of Mt. Qomolangma with a height of 5032 m a.s.l will play an important role in monitoring the global climate change.展开更多
Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical character...Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical characteristics of natural vegetation changes and their influencing factors in the Mt. Qomolangma Nature Reserve have been studied. The results show that: (1) There is remarkable spatial difference of natural vegetation changes in the Mt. Qomolangma Nature Reserve and stability is the most common status. There are 5.04% of the whole area being seriously degraded, 13.19% slightly degraded, 26.39% slightly improved, 0.97% significantly improved and 54.41% keeping stable. The seriously and slightly degraded areas, which mostly lie in the south of the reserve, are along the national boundaries. The areas of improved vegetation lie in the north of the reserve and the south side of the Yarlung Zangbo River. The stable areas lie between the improved and degraded areas. Degradation decreases with elevation. (2) Degeneration in the Mt. Qomolangma Nature Reserve mostly affects shrubs, needle-leaved forests and mixed forests. (3) The temperature change affects the natural vegetation changes spatially while the integration of temperature changes, slopes and aspects affects the natural vegetation change along the altitude gradients. (4) It is the overuse of resources that leads to the vegetation degeneration in some parts of the Mt. Qomolangma Nature Reserve.展开更多
To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy di...To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy dispersive X-ray (EDX) signal, totally 1500 particles were classed into 7 groups: soot; aluminosilicates; fly ash; calcium sulfates; Ca/Mg carbonates; metal oxides; and biological particles and carbon fragments. The size distribution and number fractions of different particle groups exhibited distinct seasonal variations between non-monsoon and monsoon periods, which are clearly related to the differences in air mass pathways. Specifically, the relative abundance of soot in non-monsoon period (25%) was much higher than that in monsoon period (14%), indicating Mt. Qomolangma region received more anthropogenic influence in non-monsoon than monsoon period.展开更多
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (...Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.展开更多
Using observed wind and water vapor data from June 2006,water vapor exchange between the Rongbuk Valley and its above atmosphere is estimated for the first time.The water vapor level shows a high value from 23-29 June...Using observed wind and water vapor data from June 2006,water vapor exchange between the Rongbuk Valley and its above atmosphere is estimated for the first time.The water vapor level shows a high value from 23-29 June and a low from 12-21 June,which co-incide with the South Asian summer monsoon (SASM) active and break stages,respectively.The water vapor can be strongly injected into the closed region of the Rongbuk Valley from the outside atmosphere,with an average strength of 0.4 g s-1 m-2 in June 2006,given that no evaporation occurred.The air moisture exchange proc-esses can be greatly affected by the SASM evolution through changes in local radiation forcing.展开更多
During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice c...During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice core was dated down to 1814 by counting δ 18 O peaks and referring to the variations of β activity and major ion concentrations. The average annual accumulation is 224mm (ice equivalent). Five cold periods and five warm periods have been reconstructed from the ice core for the last 200 years and the general tendency of climatic change is warming, which is agree with the temperature change in the Northern Hemisphere. Also the climatic records in Far East Rongbuk ice core has good agreement with that in the Guliya ice core. This indicates that the climatic changes are consistent in the northwestern and southern Qinghai—Tibetan Plateau, and the ranges of climatic changes are larger in southern Plateau than that in northwestern Plateau. Though the δ 18 O variations has some negatively correlation with precipitation amount for short time scale, these do not effect δ 18 O changes reflecting temperature for long time scale.展开更多
Mt. Qomolangma is the loftiest mountain at the top of Himalayas;the mountain peak is shaped like a pyramid and penetrates directly into the sky offering a spectacular view.
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t...The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.展开更多
Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o ...Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o rganisms,plants and animals through direct or indirect exposure.However,the current understanding of the toxicity of copper is rather limited.Copper overload can perturb intracellular homeostasis and induce oxidative stress and e ven cell death.Recently,cuproptosis has been identified as a copper-dependent form of cell death induced by o xidative stress in mitochondria.We uncover here that zinc transporter 1(ZNT1)is an important regulator involved in cuproptosis.Firstly,we established the copper overload-induced cell death model with the overexpression of copper importer SLC31A1 in HeLa cells.Using this model,we conducted unbiased genome-wide CRISPR-Cas9 screens in cells treated with copper.Our results revealed a significant enrichment of ZNT1 gene in both library A and library B plasmids.Knocking out of ZNT1 in HeLa cells notably prevented cuproptosis.Subsequent knockout of metal transcription factor 1(MTF1)in ZNT1-deficient cells nearly abolished their ability to resist copper-induced cell death.However,overexpression of metallothionein 1X(MT1X)in the double-knockout cells could p artially restored the resistance to cuproptosis by loss of MTF1.Mechanistically,knockout of ZNT1 could promote MT1X expression by activating MTF1.As a consequence,the interaction between MT1X and copper was e nhanced,reducing the flow of copper into mitochondria and eliminating mitochondria damage.Taken together,this study reveals the important role of ZNT1 in cuproptosis and shows MTF1-MT1X axis mediated resistance to c uproptosis.Moreover,our study will help to understand the regulatory mechanism of cellular and systemic copper homeostasis under copper overload,and present insights into novel treatments for damages caused by both genetic copper overload diseases and environmental copper contamination.展开更多
Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.展开更多
基金The Climate Change Programme of The China Meteorological Administration, No.CCSF2005-2-QH38 National Basic Research Program of China, No.2005CB422006 Knowledge Innovation Project of CAS, No.KZCX3-SW-3392
文摘Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filter and accumulated variance analysis methods, the spatial and temporal patterns of the climatic change in this region were analyzed. The main findings can be summarized as follows: (1) There is obvious ascending tendency for the interannual change of air temperature in Mt. Qomolangma region and the ascending tendency of Tingri, the highest station, is the most significant. The rate of increasing air temperature is 0.234℃/decade in Mt. Qomolangma region, 0.302 ℃/decade in Tingxi. The air temperature increases more strongly in non-growing season. (2) Compared with China and the global average, the warming of Mt. Qomolangma region occurred early. The linear rates of temperature increase in Mt. Qomolangma region exceed those for China and the global average in the same period. This is attributed to the sensitivity of mountainous regions to climate change. (3) The southern and northern parts of Mt. Qomolangma region are quite different in precipitation changes. Stations in the northern part show increasing trends but are not statistically significant. Nyalam in the southern part shows a decreasing trend and the sudden decreasing of precipitation occurred in the early 1990s. (4) Compared with the previous studies, we find that the warming of Mt. Qomolangma high-elevation region is most significant in China in the same period. The highest automatic meteorological comprehensive observation station in the world set up at the base camp of Mt. Qomolangma with a height of 5032 m a.s.l will play an important role in monitoring the global climate change.
基金the National Basic Research Program of China, No.2005CB422006Social Commonweal Re-search Project of Ministry of Science and Technology of China, No.2005DIA3J106National Natural Science Foundation of China, No.40331006
文摘Based on the NOAA AVHRR-NDVI data from 1981 to 2001, the digitalized China Vegetation Map (1:1,000,000), DEM, temperature and precipitation data, and field investigation, the spatial patterns and vertical characteristics of natural vegetation changes and their influencing factors in the Mt. Qomolangma Nature Reserve have been studied. The results show that: (1) There is remarkable spatial difference of natural vegetation changes in the Mt. Qomolangma Nature Reserve and stability is the most common status. There are 5.04% of the whole area being seriously degraded, 13.19% slightly degraded, 26.39% slightly improved, 0.97% significantly improved and 54.41% keeping stable. The seriously and slightly degraded areas, which mostly lie in the south of the reserve, are along the national boundaries. The areas of improved vegetation lie in the north of the reserve and the south side of the Yarlung Zangbo River. The stable areas lie between the improved and degraded areas. Degradation decreases with elevation. (2) Degeneration in the Mt. Qomolangma Nature Reserve mostly affects shrubs, needle-leaved forests and mixed forests. (3) The temperature change affects the natural vegetation changes spatially while the integration of temperature changes, slopes and aspects affects the natural vegetation change along the altitude gradients. (4) It is the overuse of resources that leads to the vegetation degeneration in some parts of the Mt. Qomolangma Nature Reserve.
基金supported by the National Natural Science Foundation of China (No. 40605034, 40771087, 40830743)the National Basic Research Program (973) of China (No. 2005CB422004)the State Key Labo- ratory of Cryospheric Sciences (No. SKLCS-ZZ-2008-1)
文摘To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy dispersive X-ray (EDX) signal, totally 1500 particles were classed into 7 groups: soot; aluminosilicates; fly ash; calcium sulfates; Ca/Mg carbonates; metal oxides; and biological particles and carbon fragments. The size distribution and number fractions of different particle groups exhibited distinct seasonal variations between non-monsoon and monsoon periods, which are clearly related to the differences in air mass pathways. Specifically, the relative abundance of soot in non-monsoon period (25%) was much higher than that in monsoon period (14%), indicating Mt. Qomolangma region received more anthropogenic influence in non-monsoon than monsoon period.
基金supported by the National Natural Science Foundation of China (40601056, 40121101)the Special Funds for Major State Basic Research Project (2009CB723901)+4 种基金the Special Science Foundation on Meteorological Project Research for Public Benefit (GYHY(QX)2007-6-18)the Survey Project on Glacier resources and their changes in China (No.2006FY110200)the Opening Fund projects of State Key Laboratory of Remote Sensing Science in the Institute of Remote Sensing Applicationsthe innovative project of Institute of Tibetan Plateau Research (ITPR),CASthrough a cooperation project between the Climate Change Institute, University of Maine supported by the National Oceanic and Atmospheric Administration (NA04OAR4600179) and the Institute of Tibetan Plateau Research (ITPR), CAS
文摘Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.
基金financed by the National Natural Science Foundation of China (Grant No.40533018)the Ministry of Science and Technology of the People’s Republic of China(Grant No.2009CB421403)the Chinese Academy of Sciences(Grants No.KZCX3-SW-231 and 8-070203)
文摘Using observed wind and water vapor data from June 2006,water vapor exchange between the Rongbuk Valley and its above atmosphere is estimated for the first time.The water vapor level shows a high value from 23-29 June and a low from 12-21 June,which co-incide with the South Asian summer monsoon (SASM) active and break stages,respectively.The water vapor can be strongly injected into the closed region of the Rongbuk Valley from the outside atmosphere,with an average strength of 0.4 g s-1 m-2 in June 2006,given that no evaporation occurred.The air moisture exchange proc-esses can be greatly affected by the SASM evolution through changes in local radiation forcing.
文摘During the Sino\|American Expedition to Mt. Qomolangma in May 1997, a 41m ice core was recovered from an elevation of 6500m from the northern branch firn basin of the Far East Rongbuk Glacier in Mt. Everest. The ice core was dated down to 1814 by counting δ 18 O peaks and referring to the variations of β activity and major ion concentrations. The average annual accumulation is 224mm (ice equivalent). Five cold periods and five warm periods have been reconstructed from the ice core for the last 200 years and the general tendency of climatic change is warming, which is agree with the temperature change in the Northern Hemisphere. Also the climatic records in Far East Rongbuk ice core has good agreement with that in the Guliya ice core. This indicates that the climatic changes are consistent in the northwestern and southern Qinghai—Tibetan Plateau, and the ranges of climatic changes are larger in southern Plateau than that in northwestern Plateau. Though the δ 18 O variations has some negatively correlation with precipitation amount for short time scale, these do not effect δ 18 O changes reflecting temperature for long time scale.
文摘Mt. Qomolangma is the loftiest mountain at the top of Himalayas;the mountain peak is shaped like a pyramid and penetrates directly into the sky offering a spectacular view.
基金financially supported by the National Natural Science Foundation of China[grant number 42230610]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0103]+1 种基金the Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0217]the Scientific Research Project of Chengdu University of Information Technology[grant number KYTZ201721].
文摘The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.
文摘Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o rganisms,plants and animals through direct or indirect exposure.However,the current understanding of the toxicity of copper is rather limited.Copper overload can perturb intracellular homeostasis and induce oxidative stress and e ven cell death.Recently,cuproptosis has been identified as a copper-dependent form of cell death induced by o xidative stress in mitochondria.We uncover here that zinc transporter 1(ZNT1)is an important regulator involved in cuproptosis.Firstly,we established the copper overload-induced cell death model with the overexpression of copper importer SLC31A1 in HeLa cells.Using this model,we conducted unbiased genome-wide CRISPR-Cas9 screens in cells treated with copper.Our results revealed a significant enrichment of ZNT1 gene in both library A and library B plasmids.Knocking out of ZNT1 in HeLa cells notably prevented cuproptosis.Subsequent knockout of metal transcription factor 1(MTF1)in ZNT1-deficient cells nearly abolished their ability to resist copper-induced cell death.However,overexpression of metallothionein 1X(MT1X)in the double-knockout cells could p artially restored the resistance to cuproptosis by loss of MTF1.Mechanistically,knockout of ZNT1 could promote MT1X expression by activating MTF1.As a consequence,the interaction between MT1X and copper was e nhanced,reducing the flow of copper into mitochondria and eliminating mitochondria damage.Taken together,this study reveals the important role of ZNT1 in cuproptosis and shows MTF1-MT1X axis mediated resistance to c uproptosis.Moreover,our study will help to understand the regulatory mechanism of cellular and systemic copper homeostasis under copper overload,and present insights into novel treatments for damages caused by both genetic copper overload diseases and environmental copper contamination.
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.