期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多Agent传动关系的股市趋势预测
1
作者 鲍志 姚宏亮 +2 位作者 方帅 杨静 俞奎 《计算机工程》 CAS CSCD 北大核心 2024年第3期267-276,共10页
股市趋势预测是机器学习领域中一个具有挑战性的任务。由于一些因素对于股市的影响是动态且不确定的,导致股市趋势难以预测。针对已有方法在股市预测时存在的灵敏性差、适应力弱等问题,从快变量和慢变量的传动关系出发,利用Agent技术对... 股市趋势预测是机器学习领域中一个具有挑战性的任务。由于一些因素对于股市的影响是动态且不确定的,导致股市趋势难以预测。针对已有方法在股市预测时存在的灵敏性差、适应力弱等问题,从快变量和慢变量的传动关系出发,利用Agent技术对股市中的快周期和慢周期进行联合建模,提出一种多Agent传动影响图(MATID)股市趋势预测方法。给出股市中快周期和慢周期的划分标准,并引入周期能量的概念;通过对相关趋势指标的特征融合,给出周期能量的量化计算方法;通过分析快周期和慢周期的动态作用过程,给出传动因子的表示方法;将快周期和慢周期分别对应成不同的Agent,利用多Agent影响图模型建模快周期和慢周期的传动过程;利用股市振子模型表示快Agent和慢Agent之间的传动效用,利用联合树的自动推理技术对股市趋势进行预测。在不同样本数量和不同股市趋势下进行实验,结果表明,与门控循环单元、S-LSTM和Hybrid-RNN预测方法相比,MATID方法预测精确率提升1.5%~7.0%,召回率提升5.4%~6.7%,F1值提升3.7%~6.2%,具有良好的灵敏性和适应力。 展开更多
关键词 多Agent传动影响图 周期传动 振子模型 效用函数 联合树
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部