Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq ...Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq to detect QTL is often limited by inappropriate experimental designs, as evidenced by numerous practical studies. Most BSA-seq studies have utilized small to medium-sized populations, with F2populations being the most common choice. Nevertheless, theoretical studies have shown that using a large population with an appropriate pool size can significantly enhance the power and resolution of QTL detection in BSA-seq, with F_(3)populations offering notable advantages over F2populations. To provide an experimental demonstration, we tested the power of BSA-seq to identify QTL controlling days from sowing to heading(DTH) in a 7200-plant rice F_(3)population in two environments, with a pool size of approximately 500. Each experiment identified 34 QTL, an order of magnitude greater than reported in most BSA-seq experiments, of which 23 were detected in both experiments, with 17 of these located near41 previously reported QTL and eight cloned genes known to control DTH in rice. These results indicate that QTL mapping by BSA-seq in large F_(3)populations and multi-environment experiments can achieve high power, resolution, and reliability.展开更多
To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-envi...To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data.展开更多
Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era...Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.展开更多
基金supported by Natural Science Foundation of Fujian Province (CN) (2020I0009, 2022J01596)Cooperation Project on University Industry-Education-Research of Fujian Provincial Science and Technology Plan (CN) (2022N5011)+1 种基金Lancang-Mekong Cooperation Special Fund (2017-2020)International Sci-Tech Cooperation and Communication Program of Fujian Agriculture and Forestry University (KXGH17014)。
文摘Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq to detect QTL is often limited by inappropriate experimental designs, as evidenced by numerous practical studies. Most BSA-seq studies have utilized small to medium-sized populations, with F2populations being the most common choice. Nevertheless, theoretical studies have shown that using a large population with an appropriate pool size can significantly enhance the power and resolution of QTL detection in BSA-seq, with F_(3)populations offering notable advantages over F2populations. To provide an experimental demonstration, we tested the power of BSA-seq to identify QTL controlling days from sowing to heading(DTH) in a 7200-plant rice F_(3)population in two environments, with a pool size of approximately 500. Each experiment identified 34 QTL, an order of magnitude greater than reported in most BSA-seq experiments, of which 23 were detected in both experiments, with 17 of these located near41 previously reported QTL and eight cloned genes known to control DTH in rice. These results indicate that QTL mapping by BSA-seq in large F_(3)populations and multi-environment experiments can achieve high power, resolution, and reliability.
基金supported by State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University)(K2013204)co-financed with NSFC project(31470673)Guangdong Science and Technology Planning Project(2016B070701008)
文摘To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data.
文摘Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.