Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based...Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.展开更多
Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative...Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.展开更多
In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the ti...In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.展开更多
To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation mo...To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.展开更多
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte...The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.展开更多
Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ...Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.展开更多
基金Sponsored by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2013029)the National Science and Technology Major Project(Grant No.2012ZX03004003)+1 种基金the National Basic Research Development Program of China(973 Program)(Grant No.2013CB329003)the National Natural Science Foundation of China(Grant No.61201148 and No.61101123)
文摘Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.
文摘Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.
文摘In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.
基金Supported by National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008)National Aerospace Science Foundation of China(040102).
文摘To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2021JBM021)National Natural Science Foundation of China(Grant Nos.52202431,52172353).
文摘The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
基金HI-tech Research and Development Program of China
文摘Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.