The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
This study treats the determination of routes for evacuation on foot in earthquake disasters as a multi-objective optimization problem, and aims to propose a method for quantitatively searching for evacuation routes u...This study treats the determination of routes for evacuation on foot in earthquake disasters as a multi-objective optimization problem, and aims to propose a method for quantitatively searching for evacuation routes using a multi-objective genetic algorithm (multi-objective GA) and GIS. The conclusions can be summarized in the following three points. 1) A GA was used to design and create an evacuation route search algorithm which solves the problem of the optimization of earthquake disaster evacuation routes by treating it as an optimization problem with multiple objectives, such as evacuation distance and evacuation time. 2) In this method, goodness of fit is set by using a Pareto ranking method to determine the ranking of individuals based on their relative superiorities and inferiorities. 3) In this method, searching for evacuation routes based on the information on present conditions allows evacuation routes to be derived based on present building and road locations.?Further, this method is based on publicly available information;therefore, obtaining geographic information similar to that of this study enables this method to be effective regardless of what region it is applied to, or whether the data regards the past or the future. Therefore, this method has high degree of spatial and temporal reproducibility.展开更多
At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and ...At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and industrial communities.This work proposes an HHCSRP considering several care centers,where a group of customers(i.e.,patients and the elderly)require being assigned to care centers.Then,various kinds of services are provided by caregivers for customers in different regions.By considering the skill matching,customers’appointment time,and caregivers’workload balancing,this article formulates an optimization model with multiple objectives to achieve minimal service cost and minimal delay cost.To handle it,we then introduce a brain storm optimization method with particular multi-objective search mechanisms(MOBSO)via combining with the features of the investigated HHCSRP.Moreover,we perform experiments to test the effectiveness of the designed method.Via comparing the MOBSO with two excellent optimizers,the results confirm that the developed method has significant superiority in addressing the considered HHCSRP.展开更多
A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is introduced.It minimizes both...A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is introduced.It minimizes both the total carbon emissions and the longest time consumed by the sub-tours,subject to the limited number of available vehicles.According to the characteristics of the model,a region enhanced discrete multi-objective fireworks algorithm is proposed.A partial mapping explosion operator,a hybrid mutation for adjusting the sub-tours,and an objective-driven extending search are designed,which aim to improve the convergence,diversity,and spread of the non-dominated solutions produced by the algorithm,respectively.Nine low-carbon VRP instances with different scales are used to verify the effectiveness of the new strategies.Furthermore,comparison results with four state-of-the-art algorithms indicate that the proposed algorithm has better performance of convergence and distribution on the low-carbon VRP.It provides a promising scalability to the problem size.展开更多
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
文摘This study treats the determination of routes for evacuation on foot in earthquake disasters as a multi-objective optimization problem, and aims to propose a method for quantitatively searching for evacuation routes using a multi-objective genetic algorithm (multi-objective GA) and GIS. The conclusions can be summarized in the following three points. 1) A GA was used to design and create an evacuation route search algorithm which solves the problem of the optimization of earthquake disaster evacuation routes by treating it as an optimization problem with multiple objectives, such as evacuation distance and evacuation time. 2) In this method, goodness of fit is set by using a Pareto ranking method to determine the ranking of individuals based on their relative superiorities and inferiorities. 3) In this method, searching for evacuation routes based on the information on present conditions allows evacuation routes to be derived based on present building and road locations.?Further, this method is based on publicly available information;therefore, obtaining geographic information similar to that of this study enables this method to be effective regardless of what region it is applied to, or whether the data regards the past or the future. Therefore, this method has high degree of spatial and temporal reproducibility.
基金supported in part by the National Natural Science Foundation of China(Nos.62173356 and 61703320)the Science and Technology Development Fund(FDCT),Macao SAR(No.0019/2021/A)+3 种基金Shandong Province Outstanding Youth Innovation Team Project of Colleges and Universities(No.2020RWG011)Natural Science Foundation of Shandong Province(No.ZR202111110025)China Postdoctoral Science Foundation Funded Project(No.2019T120569)the Zhuhai Industry-University-Research Project with Hongkong and Macao(No.ZH22017002210014PWC).
文摘At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and industrial communities.This work proposes an HHCSRP considering several care centers,where a group of customers(i.e.,patients and the elderly)require being assigned to care centers.Then,various kinds of services are provided by caregivers for customers in different regions.By considering the skill matching,customers’appointment time,and caregivers’workload balancing,this article formulates an optimization model with multiple objectives to achieve minimal service cost and minimal delay cost.To handle it,we then introduce a brain storm optimization method with particular multi-objective search mechanisms(MOBSO)via combining with the features of the investigated HHCSRP.Moreover,we perform experiments to test the effectiveness of the designed method.Via comparing the MOBSO with two excellent optimizers,the results confirm that the developed method has significant superiority in addressing the considered HHCSRP.
基金This work was supported by the Guangdong Provincial Key Laboratory(No.2020B121201001)the National Natural Science Foundation of China(NSFC)(Nos.61502239 and 62002148)+3 种基金Natural Science Foundation of Jiangsu Province of China(No.BK20150924)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2017ZT07X386)Shenzhen Science and Technology Program(No.KQTD2016112514355531)Research Institute of Trustworthy Autonomous Systems(RITAS).
文摘A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is introduced.It minimizes both the total carbon emissions and the longest time consumed by the sub-tours,subject to the limited number of available vehicles.According to the characteristics of the model,a region enhanced discrete multi-objective fireworks algorithm is proposed.A partial mapping explosion operator,a hybrid mutation for adjusting the sub-tours,and an objective-driven extending search are designed,which aim to improve the convergence,diversity,and spread of the non-dominated solutions produced by the algorithm,respectively.Nine low-carbon VRP instances with different scales are used to verify the effectiveness of the new strategies.Furthermore,comparison results with four state-of-the-art algorithms indicate that the proposed algorithm has better performance of convergence and distribution on the low-carbon VRP.It provides a promising scalability to the problem size.