期刊文献+
共找到2,900篇文章
< 1 2 145 >
每页显示 20 50 100
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
1
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
2
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
下载PDF
Multi-task Learning of Semantic Segmentation and Height Estimation for Multi-modal Remote Sensing Images 被引量:2
3
作者 Mengyu WANG Zhiyuan YAN +2 位作者 Yingchao FENG Wenhui DIAO Xian SUN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期27-39,共13页
Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively u... Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation. 展开更多
关键词 MULTI-MODAL multi-task semantic segmentation height estimation convolutional neural network
下载PDF
Vision-based multi-level synthetical evaluation of seismic damage for RC structural components: a multi-task learning approach 被引量:1
4
作者 Xu Yang Qiao Weidong +2 位作者 Zhao Jin Zhang Qiangqiang Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期69-85,共17页
Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new... Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models. 展开更多
关键词 post-earthquake evaluation multi-task learning computer vision structural component segmentation seismic damage recognition deterioration state assessment
下载PDF
MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN 被引量:1
5
作者 Kaiyue Wang Jian Gao Xinyan Lei 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期619-638,共20页
Traffic characterization(e.g.,chat,video)and application identifi-cation(e.g.,FTP,Facebook)are two of the more crucial jobs in encrypted network traffic classification.These two activities are typically carried out se... Traffic characterization(e.g.,chat,video)and application identifi-cation(e.g.,FTP,Facebook)are two of the more crucial jobs in encrypted network traffic classification.These two activities are typically carried out separately by existing systems using separate models,significantly adding to the difficulty of network administration.Convolutional Neural Network(CNN)and Transformer are deep learning-based approaches for network traf-fic classification.CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence,and Transformer can capture long-distance feature dependencies while ignoring local details.Based on these characteristics,a multi-task learning model that combines Transformer and 1D-CNN for encrypted traffic classification is proposed(MTC).In order to make up for the Transformer’s lack of local detail feature extraction capability and the 1D-CNN’s shortcoming of ignoring long-distance correlation information when processing traffic sequences,the model uses a parallel structure to fuse the features generated by the Transformer block and the 1D-CNN block with each other using a feature fusion block.This structure improved the representation of traffic features by both blocks and allows the model to perform well with both long and short length sequences.The model simultaneously handles multiple tasks,which lowers the cost of training.Experiments reveal that on the ISCX VPN-nonVPN dataset,the model achieves an average F1 score of 98.25%and an average recall of 98.30%for the task of identifying applications,and an average F1 score of 97.94%,and an average recall of 97.54%for the task of traffic characterization.When advanced models on the same dataset are chosen for comparison,the model produces the best results.To prove the generalization,we applied MTC to CICIDS2017 dataset,and our model also achieved good results. 展开更多
关键词 Encrypted traffic classification multi-task learning feature fusion TRANSFORMER 1D-CNN
下载PDF
Robust multi-task distributed estimation based on generalized maximum correntropy criterion
6
作者 胡倩 陈枫 叶明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期705-715,共11页
False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Ba... False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm. 展开更多
关键词 distributed estimation generalized correntropy multi-task networks adaptive filtering
下载PDF
Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models
7
作者 Yang LI Yubao LIU +3 位作者 Rongfu SUN Fengxia GUO Xiaofeng XU Haixiang XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期887-899,共13页
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec... Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells. 展开更多
关键词 convection/lightning nowcasting multi-task learning geostationary satellite weather radar U-net model
下载PDF
A Multi-Task Motion Generation Model that Fuses a Discriminator and a Generator
8
作者 Xiuye Liu Aihua Wu 《Computers, Materials & Continua》 SCIE EI 2023年第7期543-559,共17页
The human motion generation model can extract structural features from existing human motion capture data,and the generated data makes animated characters move.The 3D human motion capture sequences contain complex spa... The human motion generation model can extract structural features from existing human motion capture data,and the generated data makes animated characters move.The 3D human motion capture sequences contain complex spatial-temporal structures,and the deep learning model can fully describe the potential semantic structure of human motion.To improve the authenticity of the generated human motion sequences,we propose a multi-task motion generation model that consists of a discriminator and a generator.The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17 crucial human joints in three-freedom degrees.And target motion sequences are created with these styles by the generator.Unlike traditional related works,our model can handle multiple tasks,such as identifying styles and generating data.In addition,by extracting 17 crucial joints from 29 human joints,our model avoids data redundancy and improves the accuracy of model recognition.The experimental results show that the discriminator of the model can effectively recognize diversified movements,and the generated data can correctly fit the actual data.The combination of discriminator and generator solves the problem of low reuse rate of motion data,and the generated motion sequences are more suitable for actual movement. 展开更多
关键词 Human motion DISCRIMINATOR GENERATOR human motion generation model multi-task processing performance motion style
下载PDF
Multi-Task Learning Model with Data Augmentation for Arabic Aspect-Based Sentiment Analysis
9
作者 Arwa Saif Fadel Osama Ahmed Abulnaja Mostafa Elsayed Saleh 《Computers, Materials & Continua》 SCIE EI 2023年第5期4419-4444,共26页
Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.Howeve... Aspect-based sentiment analysis(ABSA)is a fine-grained process.Its fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely related.However,most existing works on Arabic ABSA content separately address them,assume that aspect terms are preidentified,or use a pipeline model.Pipeline solutions design different models for each task,and the output from the ATE model is used as the input to the APC model,which may result in error propagation among different steps because APC is affected by ATE error.These methods are impractical for real-world scenarios where the ATE task is the base task for APC,and its result impacts the accuracy of APC.Thus,in this study,we focused on a multi-task learning model for Arabic ATE and APC in which the model is jointly trained on two subtasks simultaneously in a singlemodel.This paper integrates themulti-task model,namely Local Cotext Foucse-Aspect Term Extraction and Polarity classification(LCF-ATEPC)and Arabic Bidirectional Encoder Representation from Transformers(AraBERT)as a shred layer for Arabic contextual text representation.The LCF-ATEPC model is based on a multi-head selfattention and local context focus mechanism(LCF)to capture the interactive information between an aspect and its context.Moreover,data augmentation techniques are proposed based on state-of-the-art augmentation techniques(word embedding substitution with constraints and contextual embedding(AraBERT))to increase the diversity of the training dataset.This paper examined the effect of data augmentation on the multi-task model for Arabic ABSA.Extensive experiments were conducted on the original and combined datasets(merging the original and augmented datasets).Experimental results demonstrate that the proposed Multi-task model outperformed existing APC techniques.Superior results were obtained by AraBERT and LCF-ATEPC with fusion layer(AR-LCF-ATEPC-Fusion)and the proposed data augmentation word embedding-based method(FastText)on the combined dataset. 展开更多
关键词 Arabic aspect extraction arabic sentiment classification AraBERT multi-task learning data augmentation
下载PDF
Multi-Task Timing Assignment Algorithm for Intelligent Production of Vegetables in Open Field
10
作者 Huarui Wu Huaji Zhu +3 位作者 Jingqiu Gu Wei Guo Ning Zhang Xiao Han 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期352-362,共11页
Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet th... Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field. 展开更多
关键词 VEGETABLE unmanned tractor multi-task allocation task collaboration
下载PDF
The Entity Relationship Extraction Method Using Improved RoBERTa and Multi-Task Learning
11
作者 Chaoyu Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1719-1738,共20页
There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the... There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them.However,the volume of internet data is beyond the processing capabilities of the current internet infrastructure.Therefore,engineering works using technology to organize and analyze information and extract useful information are interesting in both industry and academia.The goal of this paper is to explore the entity relationship based on deep learning,introduce semantic knowledge by using the prepared language model,develop an advanced entity relationship information extraction method by combining Robustly Optimized BERT Approach(RoBERTa)and multi-task learning,and combine the intelligent characters in the field of linguistic,called Robustly Optimized BERT Approach+Multi-Task Learning(RoBERTa+MTL).To improve the effectiveness of model interaction,multi-task teaching is used to implement the observation information of auxiliary tasks.Experimental results show that our method has achieved an accuracy of 88.95 entity relationship extraction,and a further it has achieved 86.35%of accuracy after being combined with multi-task learning. 展开更多
关键词 Entity relationship extraction multi-task Learning RoBERTa
下载PDF
A General Linguistic Steganalysis Framework Using Multi-Task Learning
12
作者 Lingyun Xiang Rong Wang +2 位作者 Yuhang Liu Yangfan Liu Lina Tan 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2383-2399,共17页
Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While i... Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts,by performing binary classification.While it remains an unsolved problem and poses a significant threat to the security of cyberspace when various categories of non-steganographic or steganographic texts coexist.In this paper,we propose a general linguistic steganalysis framework named LS-MTL,which introduces the idea of multi-task learning to deal with the classification of various categories of steganographic and non-steganographic texts.LS-MTL captures sensitive linguistic features from multiple related linguistic steganalysis tasks and can concurrently handle diverse tasks with a constructed model.In the proposed framework,convolutional neural networks(CNNs)are utilized as private base models to extract sensitive features for each steganalysis task.Besides,a shared CNN is built to capture potential interaction information and share linguistic features among all tasks.Finally,LS-MTL incorporates the private and shared sensitive features to identify the detected text as steganographic or non-steganographic.Experimental results demonstrate that the proposed framework LS-MTL outperforms the baseline in the multi-category linguistic steganalysis task,while average Acc,Pre,and Rec are increased by 0.5%,1.4%,and 0.4%,respectively.More ablation experimental results show that LS-MTL with the shared module has robust generalization capability and achieves good detection performance even in the case of spare data. 展开更多
关键词 Linguistic steganalysis multi-task learning convolutional neural network(CNN) feature extraction detection performance
下载PDF
Multi-Task Deep Learning with Task Attention for Post-Click Conversion Rate Prediction
13
作者 Hongxin Luo Xiaobing Zhou +1 位作者 Haiyan Ding Liqing Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3583-3593,共11页
Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step proces... Online advertising has gained much attention on various platforms as a hugely lucrative market.In promoting content and advertisements in real life,the acquisition of user target actions is usually a multi-step process,such as impres-sion→click→conversion,which means the process from the delivery of the recommended item to the user’s click to the final conversion.Due to data sparsity or sample selection bias,it is difficult for the trained model to achieve the business goal of the target campaign.Multi-task learning,a classical solution to this pro-blem,aims to generalize better on the original task given several related tasks by exploiting the knowledge between tasks to share the same feature and label space.Adaptively learned task relations bring better performance to make full use of the correlation between tasks.We train a general model capable of captur-ing the relationships between various tasks on all existing active tasks from a meta-learning perspective.In addition,this paper proposes a Multi-task Attention Network(MAN)to identify commonalities and differences between tasks in the feature space.The model performance is improved by explicitly learning the stacking of task relationships in the label space.To illustrate the effectiveness of our method,experiments are conducted on Alibaba Click and Conversion Pre-diction(Ali-CCP)dataset.Experimental results show that the method outperforms the state-of-the-art multi-task learning methods. 展开更多
关键词 multi-task learning recommend system ATTENTION META-LEARNING
下载PDF
Multi-tasking to Address Diversity in Language Learning
14
作者 雷琨 《海外英语》 2014年第21期98-99,103,共3页
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately... With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines. 展开更多
关键词 multi-tasking DIVERSITY LEARNING STYLE the fishbow
下载PDF
Nuclear mass based on the multi-task learning neural network method 被引量:10
15
作者 Xing-Chen Ming Hong-Fei Zhang +3 位作者 Rui-Rui Xu Xiao-Dong Sun Yuan Tian Zhi-Gang Ge 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期96-103,共8页
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ... The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL. 展开更多
关键词 Macroscopic–microscopic model Binding energy Neural network multi-task learning
下载PDF
Face Detection Detection, Alignment Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks 被引量:5
16
作者 GUO Da ZHENG Qingfang +1 位作者 PENG Xiaojiang LIU Ming 《ZTE Communications》 2019年第3期15-22,49,共9页
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ... This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA. 展开更多
关键词 FACE DETECTION FACE ALIGNMENT FACIAL ATTRIBUTE CNN multi-task training
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
17
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
Pedestrian Attributes Recognition in Surveillance Scenarios with Hierarchical Multi-Task CNN Models 被引量:2
18
作者 Wenhua Fang Jun Chen Ruimin Hu 《China Communications》 SCIE CSCD 2018年第12期208-219,共12页
Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one.... Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively. 展开更多
关键词 attributes RECOGNITION CNN multi-task learning
下载PDF
Algorithm Design of CPCI Backboard's Interrupts Management Based on VxWorks'Multi-Tasks 被引量:1
19
作者 程敬原 安琪 杨俊峰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第5期614-617,共4页
This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, int... This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, interrupts handling and multi-tasks programming interface under VxWorks, and then emphasis is placed on the software frameworks of CPCI interrupt management based on multi-tasks. This method is sound in design and easy to adapt, ensures that all possible interrupts are handled in time, which makes it suitable for data acquisition systems with multi-channels, a high data rate, and hard real-time high energy physics. 展开更多
关键词 VXWORKS PCI multi-tasks backcard's interrupt handling
下载PDF
Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation 被引量:1
20
作者 ZHONG Guoqiang QU Jianzhang +5 位作者 WANG Haizhen LIU Benxiu JIAO Wencong FAN Zhenlin MIAO Hongli HEDJAM Rachid 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1292-1298,共7页
Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where on... Sea state bias(SSB)is an important component of errors for the radar altimeter measurements of sea surface height(SSH).However,existing SSB estimation methods are almost all based on single-task learning(STL),where one model is built on the data from only one radar altimeter.In this paper,taking account of the data from multiple radar altimeters available,we introduced a multi-task learning method,called trace-norm regularized multi-task learning(TNR-MTL),for SSB estimation.Corresponding to each individual task,TNR-MLT involves only three parameters.Hence,it is easy to implement.More importantly,the convergence of TNR-MLT is theoretically guaranteed.Compared with the commonly used STL models,TNR-MTL can effectively utilize the shared information between data from multiple altimeters.During the training of TNR-MTL,we used the JASON-2 and JASON-3 cycle data to solve two correlated SSB estimation tasks.Then the optimal model was selected to estimate SSB on the JASON-2 and the HY-270-71 cycle intersection data.For the JSAON-2 cycle intersection data,the corrected variance(M)has been reduced by 0.60 cm^2 compared to the geophysical data records(GDR);while for the HY-2 cycle intersection data,M has been reduced by 1.30 cm^2 compared to GDR.Therefore,TNR-MTL is proved to be effective for the SSB estimation tasks. 展开更多
关键词 sea state bias(SSB) radar altimeter geophysical data records(GDR) trace-norm multi-task learning
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部