Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilaye...Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilayer fracturing scenario.The optimal hydraulic fracturing strategy for themultilayer fracturing networkwas determined by introducing a vertical asymmetry factor.This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume(SRV).The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers(with a stress difference of approximately 3∼8 MPa)indicate that interlayer stress interference from multilayers and multiwells fracturing between neighboring developed formations could affect the longitudinal propagation of the reservoirs.In addition,this study investigated well spacing optimization by comparing uniformly spaced wells(100–300 m)with asymmetric spaced wells(200 m upper layer,250 m lower layer).Numerical results indicated that asymmetric spaced well placement yielded the largest stimulated reservoir volume(SRV)of 73,082 m^(3),representing a 65.42%increase compared to 100 m spaced wells.Furthermore,four different hydraulic fracturing sequences(interlayer,up-down,down-up,and center-edge)were compared for multilayer and multiwell networks.The center-edge sequence exhibited the lowest vertical asymmetry factor(0.71)and the least stress shadowing effects compared to the other sequences(0.78 for interlayer,0.75 for up-down,and 0.76 for down-up).This sequence also achieved the largest SRV(486,194m^(3)),representing an 11.87%increase compared to the down-up sequence.Therefore,the center-edge fracturing sequence is recommended formultilayer development in this block.These results offer valuable insights for optimizing well placement and fracturing sequence design in multilayer well networks,ultimately advancing the development of multilayer fracturing technology in the region.展开更多
Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were stro...Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were strongly influenced by the annealing temperature. The annealed samples obviously became discontinuous multilayers. A maximum magnetoresistance ratio of 5.6% was obtained under a relatively low saturation field of about 400 (10/4π) A/m at the optimum annealing temperature of 450°C. When the annealing temperature was increased, the resistivity decreased, and the coercive force and the saturation field increased. The magnetoresistance ratio also depended on the thickness of Co and Cu layers. The magnetic and transport properties were explained on the basis of the discontinuous multilayered structure.展开更多
In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS)...In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS),is studied using atomic force microscopy.The underwater oil-repellency of PS S-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities.The force curves were analyzed following the Stokes-Reynolds-Young-Laplace theoretical model.Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations(0.1 mM and 1 mM);however,underestimation of the attractive force was found as the NaCl concentration increases to moderate(10 mM)and high(100 mM)levels.Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties(Liu et al.in Angew Chem Int Ed 54(16):4851-4856,2015.https://doi.org/10.1002/anie.201411992).Short-range steric hindrance interactions were further introduced to simulate"brush"effect stemming from nanoscale surface roughness.It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity,which renders it potential application in surface wetting modification and anti-fouling.展开更多
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exh...The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.展开更多
Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickne...Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickness on the microstructures and magnetic properties of the films were investigated by low angle X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The experimental results show that a transition from the polycrystalline to amorphous state in the Fe layers occurs with the decrease of Fe layer thickness in the Fe/Gd multilayers. The saturation magnetization of the multilayers reduces significantly with decreasing Fe layer thickness and increasing Gd layer thickness. A superparamagnetic behavior at room temperature is observed for the [Fe(0.6 nm)/Gd(4.0 nm)]15 multilayer due to the formation of discontinuous Fe layers.展开更多
The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roug...The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.展开更多
Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for t...Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for three times. Nickel electrodeposited at multi waveformcurrent including direct current, single and double pulse from sulfamate bath can improve the bendfatigue strength of leads. Such nickel plating has a multilayer structure, its morphology ofsublayers can be clearly seen in its cross section with SEM. The electrochemical study shows thatthese sublayers have different corrosion potentials. The bend fatigue test of leads with suchplating for T8 metal package shows that the number of bend increases with the decrease of averagecurrent density of multi waveform, which can be attributed to the reduction of every sublayerthickness and the increase of layer numbers under the same condition of total thickness.展开更多
We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass ...We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.展开更多
GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1....GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.展开更多
The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 ...The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.展开更多
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up...The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.展开更多
Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/Si...Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/SiO2 front and back facet coatings as cavity mirror facets of the LDs have been deposited with electron-beam evaporation method. The reflectivity of the designed front coating is about 50% and that of the back high reflective coating is as high as 99.9%. Under pulsed current injection at room temperature, the influences of the dielectric facets were discussed. The threshold current of the ridge GaN-based LDs was decreased after the deposition of the back high reflective dielectric mirrors and decreased again after the front facets were deposited. Above the threshold, the slope efficiency of the LDs with both reflective facets was larger than those with only back facets and without any reflective facets. It is important to design the reflectivity of the front facets for improving the performance of GaN-based LDs.展开更多
Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction ...Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change展开更多
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron micr...La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.展开更多
Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers wit...Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies(SFEs)during nanoindentation is revealed.The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag,Cu,to Al with SFE increasing.In addition,it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary(TB)strengthening and dislocation strengthening,while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient.The softening mechanism is further analyzed theoretically.These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs,but also give a guideline to design the GNT metallic multilayers with required mechanical properties.展开更多
Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar st...Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar structure, interface morphology, and metastable phase presented at the interface of the multilayer system strongly depend on the bilayer thickness (Lambda). For high period multilayers, the waviness wavelength of interfaces is about two times broader than the column diameter. For a sample with Lambda =30 nm, its column width and waviness wavelength was about 80, and 190 nm, respectively. Both of them decreased with the reduction of Lambda, so as to nearly equal values of column diameter and waviness wavelength were obtained. The Fe and Ti grains of both 30 nm and 6 nm multilayers are polycrystalline, and have a textured structure. In short bilayer thickness (Lambda =6 nm), the intermetallic compound Fe2Ti was presented at the interfaces due to solid state reaction; for Lambda =2 nm, amorphous phase Ti-rich layer was formed at the interfaces, resulting in a sharp interface multilayer structure.展开更多
A theory of EM wave propagation through magnetic multilayers and superlattices is presented based on the propagation matrix of a magnetic film. By using the P matrix, the transmission and reflection coefficients of la...A theory of EM wave propagation through magnetic multilayers and superlattices is presented based on the propagation matrix of a magnetic film. By using the P matrix, the transmission and reflection coefficients of layered magnetic media, including: (l)semi-infinite magnetic surfaces, (2) magnetic multilayers, (3) semi-infinite magnetic superlattices are obtained. The numerical results show that the EM modes of a magnetic layer system is excited and manifested as the sharp dips in the S-polarized reflection and the dispersion curves of the magnetic polaritons can be measured by a method similar to the attenuated total reflection (ATR) technique.展开更多
Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magne...Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.展开更多
基金supported by the National Natural Science Foundation of China(51704324,52374027)Shandong Natural Science Foundation of China(ZR2022ME025,ZR2023ME158).
文摘Based on a geology-engineering sweet spot evaluation,the high-quality reservoir zones and horizontal well landing points were determined.Subsequently,fracture propagation and production were simulated with a multilayer fracturing scenario.The optimal hydraulic fracturing strategy for themultilayer fracturing networkwas determined by introducing a vertical asymmetry factor.This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume(SRV).The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers(with a stress difference of approximately 3∼8 MPa)indicate that interlayer stress interference from multilayers and multiwells fracturing between neighboring developed formations could affect the longitudinal propagation of the reservoirs.In addition,this study investigated well spacing optimization by comparing uniformly spaced wells(100–300 m)with asymmetric spaced wells(200 m upper layer,250 m lower layer).Numerical results indicated that asymmetric spaced well placement yielded the largest stimulated reservoir volume(SRV)of 73,082 m^(3),representing a 65.42%increase compared to 100 m spaced wells.Furthermore,four different hydraulic fracturing sequences(interlayer,up-down,down-up,and center-edge)were compared for multilayer and multiwell networks.The center-edge sequence exhibited the lowest vertical asymmetry factor(0.71)and the least stress shadowing effects compared to the other sequences(0.78 for interlayer,0.75 for up-down,and 0.76 for down-up).This sequence also achieved the largest SRV(486,194m^(3)),representing an 11.87%increase compared to the down-up sequence.Therefore,the center-edge fracturing sequence is recommended formultilayer development in this block.These results offer valuable insights for optimizing well placement and fracturing sequence design in multilayer well networks,ultimately advancing the development of multilayer fracturing technology in the region.
文摘Co/Cu discontinuous multilayers were prepared by rf-sputtering method under high sputtering power and then annealed at various temperatures in a high vacuum. The structural, magnetic and transport properties were strongly influenced by the annealing temperature. The annealed samples obviously became discontinuous multilayers. A maximum magnetoresistance ratio of 5.6% was obtained under a relatively low saturation field of about 400 (10/4π) A/m at the optimum annealing temperature of 450°C. When the annealing temperature was increased, the resistivity decreased, and the coercive force and the saturation field increased. The magnetoresistance ratio also depended on the thickness of Co and Cu layers. The magnetic and transport properties were explained on the basis of the discontinuous multilayered structure.
基金the National Natural Science Foundation of China(51774303,51422406,51534007)the National Science and Technology Specific Project(2016ZX05028-004001)111 Project(B18054)for providing support for this research。
文摘In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS),is studied using atomic force microscopy.The underwater oil-repellency of PS S-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities.The force curves were analyzed following the Stokes-Reynolds-Young-Laplace theoretical model.Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations(0.1 mM and 1 mM);however,underestimation of the attractive force was found as the NaCl concentration increases to moderate(10 mM)and high(100 mM)levels.Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties(Liu et al.in Angew Chem Int Ed 54(16):4851-4856,2015.https://doi.org/10.1002/anie.201411992).Short-range steric hindrance interactions were further introduced to simulate"brush"effect stemming from nanoscale surface roughness.It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity,which renders it potential application in surface wetting modification and anti-fouling.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
文摘The multilayers in the forms of glass/Cu(Ni)(5.0 nm)/[Co(2.0 nm)/Cu(Ni)(0.5~3.7 nm)] 30 and glass/Ti(5.0 nm)/[Co(2.0 nm)/Ti(0.4~3.5 nm)] 30 ,prepared by dual facing target sputtering at room temperature,exhibit a soft magnetic property.The structural and magnetic properties of Co/Cu(Ni) and Co/Ti multilayers were examined as a function of the spacer layer thickness (d Ti and d Cu(Ni) ) by low angle X ray diffraction (LAXRD) and VSM measurements.The saturation magnetization M s of the Co/Ti multilayers was found to decrease with d Ti and approached to a constant value when d Ti was thick enough.But in the Co/Cu(Ni) multilayers,the M s was found to oscillate with d Cu(Ni) when d Cu(Ni) was less than 3.0 nm,and the oscillation period was about 1.0 nm.This arose from the different interlayer magnetic coupling effects.We interpret these two different kinds of interlayer magnetic couplings as the consequence of the competition between the RKKY like and superexchange couplings.
基金the National Natural Science Foundation of China (No. 50871060)
文摘Fe/Gd multilayers were prepared by alternate vapor deposition of pure Fe and Gd at a rate of 0.01-0.03 nm/s in an ultra-high-vacuum elec- tron-gun evaporation system. The effects of the constituent metal layer thickness on the microstructures and magnetic properties of the films were investigated by low angle X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The experimental results show that a transition from the polycrystalline to amorphous state in the Fe layers occurs with the decrease of Fe layer thickness in the Fe/Gd multilayers. The saturation magnetization of the multilayers reduces significantly with decreasing Fe layer thickness and increasing Gd layer thickness. A superparamagnetic behavior at room temperature is observed for the [Fe(0.6 nm)/Gd(4.0 nm)]15 multilayer due to the formation of discontinuous Fe layers.
文摘The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.
文摘Nickel is commonly coated on the outer leads for T8 metal package. The leadselectrodeposited by conventional dull or bright nickel over 5μm at direct current from Watt bathare hard to pass the bend fatigue test for three times. Nickel electrodeposited at multi waveformcurrent including direct current, single and double pulse from sulfamate bath can improve the bendfatigue strength of leads. Such nickel plating has a multilayer structure, its morphology ofsublayers can be clearly seen in its cross section with SEM. The electrochemical study shows thatthese sublayers have different corrosion potentials. The bend fatigue test of leads with suchplating for T8 metal package shows that the number of bend increases with the decrease of averagecurrent density of multi waveform, which can be attributed to the reduction of every sublayerthickness and the increase of layer numbers under the same condition of total thickness.
文摘We report the magnetic properties of Tb/Si multilayers obtained by rf-sputtering at the Tb layer thickness LTb = 3 nm. Analysis of the magnetization processes indicates more complex behaviour than canonical spinglass transition. It is more probable that these multilayers contain both Tb superparamagnetic particles and Tb-Si spin-glass alloys.
基金Ministry of Education, Science, Sports and Culture under Grantin-Aid for Scielltific Research on Priority Areas (A), Japan!(No.
文摘GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.
基金Supported by the National Basic Research Program of China under Grant No 2011CB921804the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023
文摘The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572118 and 11372103)the Hunan Provincial Science Fund for Distinguished Young Scholars,China(Grant No.2015JJ1006)the National Key Research and Development Program of China(Grant No.2016YFB0700300)
文摘The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.
基金supported by the National High Technology Program of China (Grant No 2007AA03Z403)the National Natural Science Foundation of China (Grant Nos 60776042 and 60477011)National Basic Research Program of China (Grand No2006CB921607)
文摘Ridge InGaN multi-quantum-well-structure (MQW) edge-emitting laser diodes (LDs) were grown on (0001) sapphire substrates by low-pressure metal-organic chemical vapour deposition (MOCVD). The dielectric TiO2/SiO2 front and back facet coatings as cavity mirror facets of the LDs have been deposited with electron-beam evaporation method. The reflectivity of the designed front coating is about 50% and that of the back high reflective coating is as high as 99.9%. Under pulsed current injection at room temperature, the influences of the dielectric facets were discussed. The threshold current of the ridge GaN-based LDs was decreased after the deposition of the back high reflective dielectric mirrors and decreased again after the front facets were deposited. Above the threshold, the slope efficiency of the LDs with both reflective facets was larger than those with only back facets and without any reflective facets. It is important to design the reflectivity of the front facets for improving the performance of GaN-based LDs.
文摘Polycrystalline TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy Substrates. Multilayer structure and composition modulation amplitudes were studied using X-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For A>8.0 nm, hardness is lower than rule-of mixtures value of individual single layer, and increased rapidly with decreasing A, peaking at hardness values≈33% higher than that at A=4.3 nm. As a result of analysing the inclination of applied load for indenter displacement on P-h curve (△P/△h), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsibie for the hardness change
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金NAMCC under Grant86&715-014-0070 and NSFC under Grant 59601002 and59831020.
文摘La0.7Ca0.3MnO3 (LCMO) films and La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 (LCMO/GCMO) multilayers have been prepared by pulsed laser deposition. The microstructures of both systems were investigated by transmission electron microscopy (TEM). The main structure of the films and the multilayers was monoclinic with a unit cell of size 2ap x-2ap. x -2ap, where ap is the lattice constant of single perovskite crystal. The LCMO films were composed of three-dimension multitwinning domains, while the LCMO/GCMO multilayers showed two-domain structure. In LCMO/GCMO multilayers, LCMO layers were coherent with GCMO layers and the interfaces between LCMO and GCMO layers were free from mismatch dislocation, which resulted in highly strained multilayerd structures.
基金the National Natural Science Foundation of China(Grant Nos.51621004,11572118,51871092,and 11772122)the National Key Research and Development Program of China(Grant No.2016YFB0700300)。
文摘Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies(SFEs)during nanoindentation is revealed.The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag,Cu,to Al with SFE increasing.In addition,it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary(TB)strengthening and dislocation strengthening,while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient.The softening mechanism is further analyzed theoretically.These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs,but also give a guideline to design the GNT metallic multilayers with required mechanical properties.
基金Financial support from National Natural Science Foundation of China and the Ministry of Science&Technology of China(Grant No.(1999064505)is acknowledged.
文摘Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar structure, interface morphology, and metastable phase presented at the interface of the multilayer system strongly depend on the bilayer thickness (Lambda). For high period multilayers, the waviness wavelength of interfaces is about two times broader than the column diameter. For a sample with Lambda =30 nm, its column width and waviness wavelength was about 80, and 190 nm, respectively. Both of them decreased with the reduction of Lambda, so as to nearly equal values of column diameter and waviness wavelength were obtained. The Fe and Ti grains of both 30 nm and 6 nm multilayers are polycrystalline, and have a textured structure. In short bilayer thickness (Lambda =6 nm), the intermetallic compound Fe2Ti was presented at the interfaces due to solid state reaction; for Lambda =2 nm, amorphous phase Ti-rich layer was formed at the interfaces, resulting in a sharp interface multilayer structure.
基金Supported by the National Natural Science Foundation of China
文摘A theory of EM wave propagation through magnetic multilayers and superlattices is presented based on the propagation matrix of a magnetic film. By using the P matrix, the transmission and reflection coefficients of layered magnetic media, including: (l)semi-infinite magnetic surfaces, (2) magnetic multilayers, (3) semi-infinite magnetic superlattices are obtained. The numerical results show that the EM modes of a magnetic layer system is excited and manifested as the sharp dips in the S-polarized reflection and the dispersion curves of the magnetic polaritons can be measured by a method similar to the attenuated total reflection (ATR) technique.
基金supported by the National Natural Science Foundation of China (Grant No. 51901008)the National Key Research and Development Program of China (Grant No. 2021YFB3201800)。
文摘Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.