N-doped anatase-rutile titanium dioxide(N-TiO2)is a classical semiconductor widely used in environmental remediation.Its photocatalytic performance is typically affected by its morphology,porous structure,and phase co...N-doped anatase-rutile titanium dioxide(N-TiO2)is a classical semiconductor widely used in environmental remediation.Its photocatalytic performance is typically affected by its morphology,porous structure,and phase composition.Herein,disk-like mesoporous N-TiO2 was prepared by calcining MIL-125(Ti)and melamine matrix at different temperatures in air.The photocatalytic efficiency of the prepared mesoporous N-TiO2 for the photo-oxidation of gaseous benzene under visible-light irradiation was studied.With respect to light absorption and mass transfer,as-prepared N-TiO2 annealed at 500℃(MM-500)showed the best photocatalytic activity with corresponding photodegradation and mineralization efficiencies of 99.1%and 72.0%,respectively.In addition.MM-500 exhibited excellent reusability and stability in cyclic experiments,in which 84.8%of gaseous benzene could still be photodegraded after 10 experimental cycles.Furthermore,electron spin resonance analysis indicated that·OH and·O2-radicals were the dominating reactive oxygen species during the photo-oxidation process.Their excellent performance suggests that the as-prepared N-TiO2 photocatalysts can be used to eliminate volatile organic compounds.展开更多
The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron...The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.展开更多
Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis strain (AS 1.439) from Ming lake were decomposed by photocatalytic nanostructure N-TiO2 thin films in a photo-reactor under UV irradiation. The differe...Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis strain (AS 1.439) from Ming lake were decomposed by photocatalytic nanostructure N-TiO2 thin films in a photo-reactor under UV irradiation. The different thickness nanostructure N-TiO2 thin films coated on mesh grid were prepared by sol-gel method and immobilized at 500 ℃ (films A) or 350 ℃ (films B) for 1 h in a muffle furnace. The results showed that N-TiO2 thin film B (8.18 nm thickness, 2.760 nm height and 25.15 nm diameter) has more uniform granular nanostructure and thinner flat texture than N-TiO2 thin film A (12.17 nm thickness, 3.578 nm height and 27.50 nm diameter). The bactericidal action of N-TiO2 thin film A and film B for Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis varniger strain (AS1.439) were investigated in this work. More than 95% of photocatalytic bactericidal efficiency for Pseudomonas aeruginosa strain (AS 1.50) and 75% for Bacillus subtilis strain (AS 1.439) were achieved by using N-TiO2 thin films-B for 70-80 rain of irradiation during the photo-bactericidal experimental process. The results indicated that the photo-induced bactericidal efficiency of N-TiO2 thin films probably depended on the characteristics of the films.展开更多
文摘N-doped anatase-rutile titanium dioxide(N-TiO2)is a classical semiconductor widely used in environmental remediation.Its photocatalytic performance is typically affected by its morphology,porous structure,and phase composition.Herein,disk-like mesoporous N-TiO2 was prepared by calcining MIL-125(Ti)and melamine matrix at different temperatures in air.The photocatalytic efficiency of the prepared mesoporous N-TiO2 for the photo-oxidation of gaseous benzene under visible-light irradiation was studied.With respect to light absorption and mass transfer,as-prepared N-TiO2 annealed at 500℃(MM-500)showed the best photocatalytic activity with corresponding photodegradation and mineralization efficiencies of 99.1%and 72.0%,respectively.In addition.MM-500 exhibited excellent reusability and stability in cyclic experiments,in which 84.8%of gaseous benzene could still be photodegraded after 10 experimental cycles.Furthermore,electron spin resonance analysis indicated that·OH and·O2-radicals were the dominating reactive oxygen species during the photo-oxidation process.Their excellent performance suggests that the as-prepared N-TiO2 photocatalysts can be used to eliminate volatile organic compounds.
基金Supported by the National Natural Science Foundation of China(No.51073064)the Science Foundation of Anhui Province, China(No.090414192)
文摘The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.
基金Project (No. 2KM02501G) supported by the Program of Science and Technology Fund of Guangdong Province, China
文摘Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis strain (AS 1.439) from Ming lake were decomposed by photocatalytic nanostructure N-TiO2 thin films in a photo-reactor under UV irradiation. The different thickness nanostructure N-TiO2 thin films coated on mesh grid were prepared by sol-gel method and immobilized at 500 ℃ (films A) or 350 ℃ (films B) for 1 h in a muffle furnace. The results showed that N-TiO2 thin film B (8.18 nm thickness, 2.760 nm height and 25.15 nm diameter) has more uniform granular nanostructure and thinner flat texture than N-TiO2 thin film A (12.17 nm thickness, 3.578 nm height and 27.50 nm diameter). The bactericidal action of N-TiO2 thin film A and film B for Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis varniger strain (AS1.439) were investigated in this work. More than 95% of photocatalytic bactericidal efficiency for Pseudomonas aeruginosa strain (AS 1.50) and 75% for Bacillus subtilis strain (AS 1.439) were achieved by using N-TiO2 thin films-B for 70-80 rain of irradiation during the photo-bactericidal experimental process. The results indicated that the photo-induced bactericidal efficiency of N-TiO2 thin films probably depended on the characteristics of the films.