This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
In the present paper, the random interfacial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order asymptotic solutio...In the present paper, the random interfacial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order asymptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N = 2.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Graphene, a new two-dimensional carbon material, is a rising star of physics, chemistry and materials science. In this work, we report the recent experimental researches on the Raman spectra and the temperature-depend...Graphene, a new two-dimensional carbon material, is a rising star of physics, chemistry and materials science. In this work, we report the recent experimental researches on the Raman spectra and the temperature-dependent features of graphenes and car- bon nanoscrolls, which are evolved from graphene and have an open tubular structure. The layer-dependent Raman enhancing characteristics of n-layer graphenes for crystal violet, and the thickness-dependent morphologies of gold on n-layer graphenes are also systematically investigated. Meanwhile, the aggregations of ferromagnetic and paramagnetic atoms at edges of gra- phenes and graphite are observed and the mechanisms are discussed.展开更多
金刚石材料具有优异的耐高温、抗辐照性能,用其制作的辐照探测器在反应堆等苛刻环境下具有很好的应用前景。在分析金刚石中子探测器的结构和工作原理的基础上,使用MCNP(Monte Carlo N Particle Transport Code)模拟程序构建了金刚石中...金刚石材料具有优异的耐高温、抗辐照性能,用其制作的辐照探测器在反应堆等苛刻环境下具有很好的应用前景。在分析金刚石中子探测器的结构和工作原理的基础上,使用MCNP(Monte Carlo N Particle Transport Code)模拟程序构建了金刚石中子探测器的物理模型,考虑探测器用于2 MWt液态燃料钍基熔盐试验堆(Thorium Molten Salt experimental Reactor-Liquid Fueled,TMSR-LF1)辐射场中,计算中子转换层(6LiF、10B)厚度、金刚石厚度、γ甄别阈值对探测器的中子探测效率、γ探测效率以及n/γ抑制比的影响。结果表明:6LiF更适合在中子、γ混合场中用作中子转换层;随着6LiF厚度增加,中子探测效率先增大后减小,6LiF的最优厚度为25μm;金刚石厚度增大会导致探测器的n/γ甄别性能下降,可以采用设置γ甄别阈值的方法解决金刚石层过厚时带来的γ干扰过大的问题,使探测器达到对γ不灵敏的要求。模拟研究工作获得了探测器结构参数对探测器性能的影响规律,对探测器后续的制作和研究具有指导意义。展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
基金supported by the Natural Science Foundation of Inner Mongolia,China (Grant No 200711020116)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences (Grant No KLOCAW0805)+1 种基金the Key Program of the Scientific Research Plan of Inner Mongolia University of Technology,China (Grant No ZD200608)the National Science Fund for Distinguished Young Scholars of China (Grant No 40425015)
文摘In the present paper, the random interfacial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order asymptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N = 2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10774032, 90921001, 50825206)
文摘Graphene, a new two-dimensional carbon material, is a rising star of physics, chemistry and materials science. In this work, we report the recent experimental researches on the Raman spectra and the temperature-dependent features of graphenes and car- bon nanoscrolls, which are evolved from graphene and have an open tubular structure. The layer-dependent Raman enhancing characteristics of n-layer graphenes for crystal violet, and the thickness-dependent morphologies of gold on n-layer graphenes are also systematically investigated. Meanwhile, the aggregations of ferromagnetic and paramagnetic atoms at edges of gra- phenes and graphite are observed and the mechanisms are discussed.
文摘金刚石材料具有优异的耐高温、抗辐照性能,用其制作的辐照探测器在反应堆等苛刻环境下具有很好的应用前景。在分析金刚石中子探测器的结构和工作原理的基础上,使用MCNP(Monte Carlo N Particle Transport Code)模拟程序构建了金刚石中子探测器的物理模型,考虑探测器用于2 MWt液态燃料钍基熔盐试验堆(Thorium Molten Salt experimental Reactor-Liquid Fueled,TMSR-LF1)辐射场中,计算中子转换层(6LiF、10B)厚度、金刚石厚度、γ甄别阈值对探测器的中子探测效率、γ探测效率以及n/γ抑制比的影响。结果表明:6LiF更适合在中子、γ混合场中用作中子转换层;随着6LiF厚度增加,中子探测效率先增大后减小,6LiF的最优厚度为25μm;金刚石厚度增大会导致探测器的n/γ甄别性能下降,可以采用设置γ甄别阈值的方法解决金刚石层过厚时带来的γ干扰过大的问题,使探测器达到对γ不灵敏的要求。模拟研究工作获得了探测器结构参数对探测器性能的影响规律,对探测器后续的制作和研究具有指导意义。