The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussu...The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity,but the principal mechanism and molecular target of COS remain unclear.Here,we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3,altering the ATPase activity and assembly of NLRP3 inflammasome.We declare COS’s great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation.We also reveal that theα-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation.Taken together,NLRP3 is identified as a direct target of COS for its anti-inflammasome activity.COS,especially theα-methylene-γ-butyrolactone motif in COS structure,might be used to design and produce novel NLRP3 inhibitors as a lead compound.展开更多
Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a ...Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.展开更多
甲状旁腺功能减退症(甲旁减)相对罕见,手术、遗传缺陷等多种因素可导致其发病。目前有研究提示免疫因素在甲状旁腺功能减退症发病中可能具有一定作用。体液免疫方面,随着抗甲状旁腺抗体在特发性甲旁减患者中的发现,自身免疫因素在甲旁...甲状旁腺功能减退症(甲旁减)相对罕见,手术、遗传缺陷等多种因素可导致其发病。目前有研究提示免疫因素在甲状旁腺功能减退症发病中可能具有一定作用。体液免疫方面,随着抗甲状旁腺抗体在特发性甲旁减患者中的发现,自身免疫因素在甲旁减发病机制中的作用逐渐成为国际上的研究热点。目前研究主要集中在钙敏感受体抗体和NALP5(NACHT leucine-rich-repeat protein 5)自身抗体。由于抗体异质性、检测方法、抗体阳性判断标准等原因,不同研究中这两种自身抗体在甲旁减患者中的阳性检出率差异很大。关于细胞免疫机制在甲旁减发病的作用,目前研究甚少。展开更多
Transcriptional coactivators regulate the rate of gene expression in the nucleus.Nuclear receptor coactivator 6(NCOA6),a coactivator,has been implicated in embryonic development,metabolism,and cancer pathogenesis,but ...Transcriptional coactivators regulate the rate of gene expression in the nucleus.Nuclear receptor coactivator 6(NCOA6),a coactivator,has been implicated in embryonic development,metabolism,and cancer pathogenesis,but its role in innate immunity and inflammatory diseases remains unclear.Here,we demonstrated that NCOA6 was expressed in monocytes and macrophages and that its level was increased under proinflammatory conditions.Unexpectedly,nuclear NCOA6 was found to translocate to the cytoplasm in activated monocytes and then become incorporated into the inflammasome with NLRP3 and ASC,forming cytoplasmic specks.Mechanistically,NCOA6 associated with the ATP hydrolysis motifs in the NACHT domain of NLRP3,promoting the oligomerization of NLRP3 and ASC and thereby instigating the production of IL-1βand active caspase-1.Of note,Ncoa6 deficiency markedly inhibited NLRP3 hyperactivation caused by the Nlrp3^(R258W) gain-of-function mutation in macrophages.Genetic ablation of Ncoa6 substantially attenuated the severity of two NLRP3-dependent diseases,folic-induced acute tubular necrosis and crystal-induced arthritis,in mice.Consistent with these findings,NCOA6 was highly expressed in macrophages derived from gout patients,and NCOA6-positive macrophages were significantly enriched in gout macrophages according to the transcriptome profiling results.Conclusively,NCOA6 is a critical regulator of NLRP3 inflammasome activation and is therefore a promising target for NLRP3-dependent diseases,including gout.展开更多
基金supported by the National Natural Science Foundation of China(81930108 to Guang Liang,82000793 to Wu Luo,and 82170373 to Yi Wang)Natural Science Foundation of Zhejiang Province(LY22H070004 to Wu Luo,China)+1 种基金Zhejiang Provincial Key Scientific Project(2021C03041 to Guang Liang,China)Wenzhou Scientific Project in China(Y20210213 to Wu Luo)。
文摘The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity,but the principal mechanism and molecular target of COS remain unclear.Here,we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3,altering the ATPase activity and assembly of NLRP3 inflammasome.We declare COS’s great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation.We also reveal that theα-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation.Taken together,NLRP3 is identified as a direct target of COS for its anti-inflammasome activity.COS,especially theα-methylene-γ-butyrolactone motif in COS structure,might be used to design and produce novel NLRP3 inhibitors as a lead compound.
基金supported by grants from the National Natural Science Foundation of China, Nos. 81930031 (to JNZ), 81720108015 (to JNZ), 81901525 (to SZ), 82101440 (to DDS), 81801234 (to YZ) and 82071389 (to GLY)the Natural Science Foundation of Tianjin, Nos. 20JCQNJC01270 (to JWW), 20JCQNJC00460 (to GLY), 18JCQNJC81000 (to HTR)+4 种基金Scientific Research Project of Tianjin Education Commission (Natural Science), No. 2018KJ052 (to ZWZ)Tianjin Health and Health Committee Science and Technology Project, No. QN20015 (to JWW)the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, No. 2016YD02 (to YW)Tianjin Key Science and Technology Projects of Innovative Drugs and Medical Devices, No. 19ZXYXSY00070 (to YW)the Clinical Research Fundation of Tianjin Medical University, No. 2018kylc002 (to YW)
文摘Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.
文摘甲状旁腺功能减退症(甲旁减)相对罕见,手术、遗传缺陷等多种因素可导致其发病。目前有研究提示免疫因素在甲状旁腺功能减退症发病中可能具有一定作用。体液免疫方面,随着抗甲状旁腺抗体在特发性甲旁减患者中的发现,自身免疫因素在甲旁减发病机制中的作用逐渐成为国际上的研究热点。目前研究主要集中在钙敏感受体抗体和NALP5(NACHT leucine-rich-repeat protein 5)自身抗体。由于抗体异质性、检测方法、抗体阳性判断标准等原因,不同研究中这两种自身抗体在甲旁减患者中的阳性检出率差异很大。关于细胞免疫机制在甲旁减发病的作用,目前研究甚少。
基金supported by grants from the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2015R1A3A2032927 and 2021R1A2C1008130).
文摘Transcriptional coactivators regulate the rate of gene expression in the nucleus.Nuclear receptor coactivator 6(NCOA6),a coactivator,has been implicated in embryonic development,metabolism,and cancer pathogenesis,but its role in innate immunity and inflammatory diseases remains unclear.Here,we demonstrated that NCOA6 was expressed in monocytes and macrophages and that its level was increased under proinflammatory conditions.Unexpectedly,nuclear NCOA6 was found to translocate to the cytoplasm in activated monocytes and then become incorporated into the inflammasome with NLRP3 and ASC,forming cytoplasmic specks.Mechanistically,NCOA6 associated with the ATP hydrolysis motifs in the NACHT domain of NLRP3,promoting the oligomerization of NLRP3 and ASC and thereby instigating the production of IL-1βand active caspase-1.Of note,Ncoa6 deficiency markedly inhibited NLRP3 hyperactivation caused by the Nlrp3^(R258W) gain-of-function mutation in macrophages.Genetic ablation of Ncoa6 substantially attenuated the severity of two NLRP3-dependent diseases,folic-induced acute tubular necrosis and crystal-induced arthritis,in mice.Consistent with these findings,NCOA6 was highly expressed in macrophages derived from gout patients,and NCOA6-positive macrophages were significantly enriched in gout macrophages according to the transcriptome profiling results.Conclusively,NCOA6 is a critical regulator of NLRP3 inflammasome activation and is therefore a promising target for NLRP3-dependent diseases,including gout.