期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于NARMA-L2控制器的电力系统稳定性分析 被引量:2
1
作者 薛蕊 曾实现 冯飞 《现代电子技术》 北大核心 2017年第17期141-143,共3页
基于人工神经网络提出一种新的非线性自回归移动平均控制器(NARMA-L2),将其用于电力系统的稳定性分析。该控制器应用于同步发电机励磁系统中能产生相应的辅助控制信号,可以改善阻尼低频振荡和电力系统的动态性能。将NARMA-L2控制器用于... 基于人工神经网络提出一种新的非线性自回归移动平均控制器(NARMA-L2),将其用于电力系统的稳定性分析。该控制器应用于同步发电机励磁系统中能产生相应的辅助控制信号,可以改善阻尼低频振荡和电力系统的动态性能。将NARMA-L2控制器用于对单机无穷大电力系统(SMIB)的分析,与传统电力系统稳定器(CPSS)中的遗传算法分析相比较,得到了更好的控制效果。 展开更多
关键词 遗传算法 narma-l2控制器 非线性分析 电力系统稳定器
下载PDF
改进NARMA-L2模型的无模型自校正控制器 被引量:1
2
作者 侯小秋 《黄河科技学院学报》 2022年第5期1-7,共7页
针对改进NARMA-L2模型的控制问题,采用具有辅助变量的偏格式动态线性化泛模型逼近,通过直接极小化指标函数的自适应优化算法进行参数估计,基于广义目标函数提出适用于非线性系统的无模型自校正控制器算法,仿真研究验证了算法的有效性,... 针对改进NARMA-L2模型的控制问题,采用具有辅助变量的偏格式动态线性化泛模型逼近,通过直接极小化指标函数的自适应优化算法进行参数估计,基于广义目标函数提出适用于非线性系统的无模型自校正控制器算法,仿真研究验证了算法的有效性,使系统具有良好的控制效果。 展开更多
关键词 无模型自适应控制 非线性系统 narma-l2模型
下载PDF
Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System 被引量:8
3
作者 JIN Chao WU Bo HU Youmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期33-41,共9页
Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the ... Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the temperature of critical machine elements irrespective of the operating conditions. But recent researches show that different sets of operating parameters generated significantly different error values even though the temperature of the machine elements generated was similar. As such, it is important to develop a generic thermal error model which is capable of evaluating the positioning error induced by different operating parameters. This paper ultimately aims at the development of a comprehensive prediction model that can predict the thermal characteristics under different operating conditions (feeding speed, load and preload of ballscrew) in a feed system. A novel wavelet neural network based on feedback linearization autoregressive moving averaging (NARMA-L2) model is introduced to predict the temperature rise of sensitive points and thermal positioning errors considering the different operating conditions as the model inputs. Particle swarm optimization(PSO) algorithm is brought in as the training method. According to ISO230-2 Positioning Accuracy Measurement and ISO230-3 Thermal Effect Evaluation standards, experiments under different operating conditions were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 by using Pt100 as temperature sensor, and the positioning errors were measured by Heidenhain linear grating scale. The experiment results show that the recommended method can be used to predict temperature rise of sensitive points and thermal positioning errors with good accuracy. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system based on varying operating conditions and machine tool characteristics. 展开更多
关键词 wavelet neural network narma-l2 model particle swarm optimization thermal positioning error feed system
下载PDF
NARMA-L2模型的改进及其神经网络自校正控制器 被引量:5
4
作者 侯小秋 李丽华 《黑龙江科技大学学报》 2021年第6期782-787,共6页
带预测误差补偿的NARMA-L2模型是由NARMA模型在零工作点处由一阶泰勒展开逼近的,其误差项取值较大。通过分析NARMA-L2模型存在误差项值较大的问题,利用自适应滤波动态工作点处由一阶泰勒展开逼近NARMA模型,构建改进的NARMA-L2模型,采用B... 带预测误差补偿的NARMA-L2模型是由NARMA模型在零工作点处由一阶泰勒展开逼近的,其误差项取值较大。通过分析NARMA-L2模型存在误差项值较大的问题,利用自适应滤波动态工作点处由一阶泰勒展开逼近NARMA模型,构建改进的NARMA-L2模型,采用BP神经网络辨识改进NARMA-L2模型的参数,基于广义目标函数与改进的NARMA-L2模型给出了非线性系统的隐式自校正控制器算法,以直接极小化指标函数的自适应优化算法寻优BP神经网络的连接权重值,获得了一种新的在线学习算法。研究表明,改进模型误差值较传统NARMA-L2模型小,控制算法使系统具有优良的控制效果。 展开更多
关键词 神经网络控制 自校正控制 非线性系统 narma-l2模型 广义目标函数
下载PDF
基于神经网络控制器的直流无刷电动机控制研究 被引量:1
5
作者 任晶莹 姚绪梁 +1 位作者 蔡晶 赵云凯 《农机化研究》 北大核心 2012年第6期226-229,共4页
近年来,直流无刷电动机在精细农业机械控制方面应用越来越广泛。为此,利用神经网络控制器实现对直流无刷电动机的控制,依据神经网络控制的基本原理及设计方法,提出了一种基于NARMA-LZ控制算法的神经网络控制器,对该系统控制效果进行了... 近年来,直流无刷电动机在精细农业机械控制方面应用越来越广泛。为此,利用神经网络控制器实现对直流无刷电动机的控制,依据神经网络控制的基本原理及设计方法,提出了一种基于NARMA-LZ控制算法的神经网络控制器,对该系统控制效果进行了硬件实验研究。结果表明,利用神经网络控制器对直流无刷电动机进行控制,可提高系统控制精度和动态性能,增强抗干扰能力、识别效果和可靠性。 展开更多
关键词 直流无刷电动机 神经网络控制 narma-lz控制算法 DSP
下载PDF
Turbo-shaft engine adaptive neural network control based on nonlinear state space equation
6
作者 Ziyu GU Qiuhong LI +3 位作者 Shuwei PANG Wenxiang ZHOU Jichang WU Chenyang ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期493-507,共15页
Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 a... Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated. 展开更多
关键词 Adaptive control systems Turbo-shaft engine Neural network Nonlinear state space equation narma-l2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部