In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
The nature(i.e., sub-oceanic, sub-arc or subcontinental) of ophiolitic mantle peridotites from the eastern Neo-Tethyan domain in southern Tibet has been hotly debated. This uncertainty limits our understanding of the ...The nature(i.e., sub-oceanic, sub-arc or subcontinental) of ophiolitic mantle peridotites from the eastern Neo-Tethyan domain in southern Tibet has been hotly debated. This uncertainty limits our understanding of the history and evolution of the eastern Neo-Tethys Ocean. Here we present petrological, geochemical and Re-Os isotopic data for the mantle peridotites from the Dazhuqu ophiolite in the central segment of the Yarlung Zangbo suture zone, southern Tibet. Samples collected include both spinel lherzolites and spinel harzburgites. The lherzolites have spinel Cr~# [Cr/(Cr + Al), ~ 0.3–0.4] comparable to those of typical abyssal peridotites. In contrast, the harzburgites have spinel Cr~#(~0.3–0.7) overlapping with the ranges of both abyssal and fore-arc peridotites(Day et al., 2017;Parkinson and Pearce, 1998);two samples have spinel Cr~# higher than 0.6, which is probably ascribed to intense melt-rock interactions. Clinopyroxene trace element modeling indicates that the Dazhuqu mantle peridotites have experienced 0–6% garnetfacies melting followed by 10% –18% melting in the spinel stability field. This is similar to the degree of garnet-facies melting inferred for many abyssal peridotites(Hellebrand et al., 2002) and implies deep initial melting(> 85 km), which distinguishes the Dazhuqu mantle peridotites from fore-arc peridotites(commonly <80 km in origin). The Dazhuqu peridotites have unradiogenic 187 Os/188 Os of 0.11836–0.12922, which are commonly lower than the recommended value of primitive upper mantle(PUM)(Meisel et al., 2001). All but one samples yield relatively younger Re depletion ages(TRD = 0.06–0.81 Ga) with respect to the only one sample having an older TRD age of 1.66 Ga. Re-Os isotopes and highly siderophile element(HSE) compositions of the Dazhuqu peridotites are similar to those of abyssal peridotites(Day et al., 2017) and the Oman southern massifs(Hangh?j et al., 2010) but are distinct from noncratonic sub-continental lithospheric mantle(SCLM) xenoliths and sub-arc mantle. We emphasize the similarity between the Dazhuqu and Oman ophiolites, both representing Neo-Tethyan oceanic lithosphere and implying ridge–trench collision.展开更多
End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Severa...End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.展开更多
Southeast Asia is located at the intersection of the Tethys and Pacific domains. The superimposed effects of the two tectonic domains have resulted in complicated deep structure, surface magma responses, and dynamic p...Southeast Asia is located at the intersection of the Tethys and Pacific domains. The superimposed effects of the two tectonic domains have resulted in complicated deep structure, surface magma responses, and dynamic processes of Southeast Asia. Based on the latest long-term passive seismic experiment and numerical modeling, this study reconstructs the dynamic processes of the closure of the Neo-Tethys Ocean and the formation of the curved subduction system in Southeast Asia since the Late Mesozoic. P-wave velocity structure shows a remnant of the Neo-Tethys subducted slab in the lower mantle beneath Southeast Asia at a depth of approximately 1500 km. On the Java-East Timor subduction zone, the remnant slab is coupled with the Indo-Australian subducting slab in the upper mantle with the same direction, while on the Sumatra subduction zone, the remnant slab is decoupled from the Indo-Australian subducting slab in different directions. The formation of the curved subduction system in Southeast Asia is resulted from the northward subdcutions of previous Neo-Tethys and current IndoAustralian Plate, and the westward subduction of the Pacific Plate since Mesozoic. The former is characterized by continuous subduction and subsequent continental block collision, forming the current continental lithosphere in Southeast Asia and the curve-shaped Sumatra-Java subduction zone;the latter is characterized by subduction retreat and back-arc spreading, forming the eastern Philippine subduction zone and a series of marginal sea basins. Since the Early Cretaceous, the opening of the North Australian Sea resulted in stagnation of the Australian Block in the high latitude area of the southern hemisphere for a long time.The North Australian Sea was dominated by out-dipping double subduction from 45 Ma, which resulted in rapid northward drifting of the Australian Block and final collision with the Sundaland.展开更多
The evolution and final closure of the Neo-Tethys Ocean are one of the most important geological events that have occurred on Earth since the Mesozoic.However,the evolution of the Neo-Tethys is not well constrained,in...The evolution and final closure of the Neo-Tethys Ocean are one of the most important geological events that have occurred on Earth since the Mesozoic.However,the evolution of the Neo-Tethys is not well constrained,in particular whether its opening occurred in the Permian or the Triassic and whether a plume was involved with its opening or not.In this study,we present geochronological and geochemical data for mafic igneous rocks in mélanges along the Yarlung Zangbo suture zone(YZSZ)in southern Tibet to constrain the timing and mechanism of opening the Neo-Tethys Ocean.Based on field observations,the YZSZ mélanges can be divided into three segments.The western(west of Zhongba)and eastern(Sangsang-Renbu)segments are composed of ocean plate stratigraphy representing accretionary complexes that formed during subduction of Neo-Tethyan oceanic lithosphere beneath the southern margin of the Asian continent.Mélanges in the central segment(Zhongba-eastern Saga)typically have a siliciclastic matrix,and represent Tethyan Himalayan strata that were structurally mixed with the southern margin of the Asian continent.Based on our and previously published geochemical data,the mafic rocks in the YZSZ mélanges are ocean island basalt(OIB)-like,with ages in the Late Permian-Middle Triassic,the Middle-Late Jurassic,and the Early Cretaceous,respectively.An OIB-like block with an age of ca.253 Ma is identified from the Zhongba mélanges in the western segment,and it is the oldest OIB lithology yet identified in the YZSZ mélanges related to the evolution of the Neo-Tethys Ocean.Geochemical features indicate that this OIB-like block is distinct from typical OIBs and would be formed during continental rifting to incipient seafloor spreading.In the framework of plate divergent-convergent coupling systems and based on literature data for early Middle Triassic seamounts,radiolarian cherts,and normal mid-ocean ridge basalt-like oceanic crust,we conclude that opening of the Yarlung Zangbo Neo-Tethys Ocean would mainly occur at~250–243 Ma in the Early Triassic,not later than the early phase of Middle Triassic.In addition,a mantle plume was not involved in opening the Yarlung Zangbo Neo-Tethys Ocean.On the other hand,we have also identified a suite of ca.160 Ma OIB-like basaltic sills from the Bainang mélanges in the eastern segment,which is the same age as the OIB lithologies previously reported in the Zhongba mélanges.Based on the sill-like occurrence and absence of plume-related rock associations in this region,the Bainang OIB-like rocks might result from Middle-Late Jurassic continental rifting in northern Gondwana.Magmatism related to this tectonic event is preserved in both the YZSZ mélanges and Himalayan strata,but its tectonic significance requires further investigation.Based on this study of the YZSZ mélanges and the previous studies of YZSZ ophiolites,Gangdese belt igneous rocks,and sedimentary rocks,we have reconstructed the entire Wilson Cycle of the Yarlung Zangbo Neo-Tethys Ocean,mainly involving continental rifting and ocean opening,subduction initiation,ultraslow-spreading ridge-trench conversion,subduction re-initiation,and oceanic closure and initial India-Asia collision for the tectonic emplacement of ophiolites.These processes were associated not only with magmatic flare-ups and lulls in the Gangdese belt but also with two stages of ophiolite obduction.Our data therefore provide new insights into the evolution of the Yarlung Zangbo Neo-Tethys Ocean and related Tethyan geodynamics.展开更多
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from t...The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.展开更多
The basic granulite, which is considered to be the MORB based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of B...The basic granulite, which is considered to be the MORB based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of Burma and west Yunnan, east of Myitkyina suture in the eastern Burma. The laser micro-area 40Ar-39Ar technique is used to date the age of garnet展开更多
At the beginning of the Cenozoic,the atmospheric CO_(2)concentration increased rapidly from~2000 ppmv at 60 Ma to~4600 ppmv at 51 Ma,which is 5–10 times higher than the present value,and then continuous declined from...At the beginning of the Cenozoic,the atmospheric CO_(2)concentration increased rapidly from~2000 ppmv at 60 Ma to~4600 ppmv at 51 Ma,which is 5–10 times higher than the present value,and then continuous declined from~51 to 34 Ma.The cause of this phenomenon is still not well understood.In this study,we demonstrate that the initiation of Cenozoic west Pacific plate subduction,triggered by the hard collision in the Tibetan Plateau,occurred at approximately 51 Ma,coinciding with the tipping point.The water depths of the Pacific subduction zones are mostly below the carbonate compensation depths,while those of the Neo-Tethys were much shallower before the collision and caused far more carbonate subducting.Additionally,more volcanic ashes erupted from the west Pacific subduction zones,which consume CO_(2).The average annual west Pacific volvano eruption is 1.11 km~3,which is higher than previous estimations.The amount of annual CO_(2)absorbed by chemical weathering of additional west Pacific volcanic ashes could be comparable to the silicate weathering by the global river.We propose that the initiation of the western Pacific subduction controlled the long-term reduction of atmospheric CO_(2)concentration.展开更多
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subdu...The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3~=1.8 Ma and 229.9~1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene (47-52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features (A/CNK〈I.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive till(t) values ranging from +13.91 to +15.54 (mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma (mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic (-230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous sub- terranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.展开更多
South China is famous for the extensive magmatism and polymetallic mineralization that took place there in the Mesozoic. Shilu is a large porphyry–skarn Cu–Mo deposit in the Yangchun Basin, South China. The litholog...South China is famous for the extensive magmatism and polymetallic mineralization that took place there in the Mesozoic. Shilu is a large porphyry–skarn Cu–Mo deposit in the Yangchun Basin, South China. The lithology of the Shilu intrusion is granodiorite and quartz diorite, both of which are high-K calc-alkaline series, with high Sr([400 ppm) content along with low Y and Yb contents. Most of the samples have characteristics of adakite except for a few samples that have slightly higher Y and Yb contents, which may be plausibly explained by crustal contamination. Laser Ablation Inductively Coupled Plasma Mass Spectrometry zircon U–Pb dating revealed ages between 106.6 ± 1.3 and 103.9 ± 0.5 Ma, with multiple magmatic pulses. Molybdenite Re–Os isochron age of 102.2 ± 2.9 Ma(MSWD = 9.4) was determined, which is identical to the youngest zircon U–Pb age(103.9 ± 0.5 Ma) within error.The Shilu intrusion has high oxygen fugacity as indicated by high zircon Ce^(4+)/Ce^(3+) and Eu_N/Eu_N* ratios. Considering the geochemical characteristics(high Sr, and low Y and Yb contents), high oxygen fugacity, and copper mineralization of the Shilu intrusion, it was most likely formed by partial melting of a subducted young oceanic slab. Whole-rock Sr–Nd isotope-, zircon Hf isotope-, and whole-rock trace element analyses show that Shilu adakitic magmas may have interacted with type II enriched mantle and/or crustal materials during ascent. South China was affected by the Pacific tectonic regime to the east and the Neo-Tethys tectonic regime to the south in the Cretaceous. Based on the Pacific Plate drifting and rotation history, it is hard to explain how the Pacific Plate would have subducted and melted, forming adakitic rocks in the Shilu region. Considering the tectonic history of Southeast Asia and the South China Sea, the Neo-Tethys trench should have been much closer to the South China Block in the Cretaceous, and thus have had a greater impact on the South China Block. Based on the subduction direction, time of subduction,and distance between the Neo-Tethys subduction zone and the Shilu deposit, subduction of the Neo-Tethys ridge is the best mechanism for explaining the Shilu adakitic rocks and Cu–Mo mineralization.展开更多
This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study ...This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphis_phaera coronate, Bur)ella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene- early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.展开更多
According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An imm...According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An immature volcanic arc developed in Taniantaweng (Tanen Taunggyi) Range, indicating the existence of an Embryo-Tethyan ocean. (2) The Palaeo-Tethyan stage (C-T2: During the Carboniferous the northern side of the Taniantaweng Range was the main domain of the Palaeo-Tethyan ocean, in which developed flysch sediments intercalated with bimodal volcanic rocks and oceanic tholeiite, and Pemian-Early Triassic are granites were superimposed on the Taniantaweng magmatic are; on the southern side the Dêngqên-Nujiang zone started secondary extension during the Carboniferous, in which the Nujiang ophiolite developed, and the Palaeo-Tethyan ocean closed before the Middle Triassic. (3) The Neo-Tethyan stage (T3-E): During the Late Triassic the Dêngqên zone developed into a relatively matural ocean basin, in which the Dêngqên ophiolite was formed. By the end of the Triassic intraocean subduction occurred, and the ocean domain was reduced gradually, and collided and closed by the end of the Early Jurassic, forming the Yazong mélange; then the Tethyan ocean was completely closed.展开更多
Processes accompanied the breakup of continents spreading of ocean floor and continent-ocean transition could trigger large scale melting of the mantle beneath the continent as well as the ocean,and produce mafic magm...Processes accompanied the breakup of continents spreading of ocean floor and continent-ocean transition could trigger large scale melting of the mantle beneath the continent as well as the ocean,and produce mafic magmas with distinct展开更多
The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late ...The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late Cretaceous. The Kejie pluton samples are characterized by high SiO2 (71.68%-72.47%), K2O (4.73%-5.54%), total alkali (K2O + Na2O = 8.21%-8.53%), K2O/Na2O ratios (1.36-1.94) and low P2O5 (0.13%-0.17%), with A/CNK of 1.025-1.055; enriched in U, Th, and K, depleted in Ba, Nb, St, Ti, P and Eu. They are highly fractionated, slightly peraluminous 1-type granite. The two samples of the Kejie pluton give a large variation of εHf(t) values (-5.04 to 1.96) and Hf isotope crustal model ages of 1.16-1.5 Ga. Zircon Hf isotopes and zircon saturation temperatures of whole-rock (801℃-823℃) show that the mantle-derived materials maybe have played a vital role in the generation of the Kejie pluton. The Kejie pluton was most likely generated in a setting associated with the eastward subduction of the neo-Tethys ocean, where intrusion of mantle wedge basaltic magmas in the crust caused the anatexis of the latter, forming hybrid melts, which subsequently experienced high-degree fractional crystallization.展开更多
In this study we present new mineral chemistry,whole-rock geochemical and zircon U-Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet(China).Modal analyses ...In this study we present new mineral chemistry,whole-rock geochemical and zircon U-Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet(China).Modal analyses of these dykes gave averages of^40%-65%plagioclase and^35%-60%amphibole and small amounts of(igneous)clinopyroxene,epidote and opaque minerals.This mineral assemblage resembles that of typical orthoamphibolites.Nevertheless,due to the absence of foliation the investigated rocks are described as metamafic lithologies.These rocks have primitive mantle(PM)-normalized multi-element patterns with negative Nb and Ta anomalies as well as weak,negative Ti anomalies.In addition,they have initial 87Sr/86Sr ratios[(87Sr/86Sr)1]of0.702844-0.703581,initial 143Nd/144Nd ratios[(143Nd/144Nd)i]of 0.512891-0.512959 and high εNd(t)values(+7.9 to+9.3).Uranium-Pb ages of magmatic zircons separated from the investigated metamafic dykes indicate that the parental melts of their protoliths intruded the Sangsang mantle at^119.0-118.5 Ma.The metamorphic mineral assemblages recognized in the investigated dykes are suggestive of a retrograde metamorphic process,from(epidote-)amphibolite facies(~470-610℃,-1.9-4.3 kbar)and to prehnitepumpellyite facies(≤280℃,<3 kbar),active within a rift-produced oceanic lithosphere.Microtextural and geochemical data suggest that the protoliths of the dykes were most likely massive gabbros.Compositional data show that the parental magmas of the gabbroic protoliths were generated by melting of a depleted mantle(DM)source that had been weakly modified by fluids emanating from a subducted oceanic lithospheric slab.The age of the gabbroic protoliths is slightly younger than the existing ages for ophiolites from the central Yarlung-Zangbo Suture Zone(YZSZ)in the literature(~129-123 Ma).We,therefore,suggest that the gabbroic protoliths of the Sangsang metamafic dykes were formed in an incipient forearc setting during Neo-Tethyan subduction reinitiation(Aptian).Our tectonomagmatic model provides insights into the igneous accretion and postsolidification evolution of the oceanic lithosphere in South Tibet.展开更多
Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Sur...Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Suru Valley peridotites(∑PGE=96-180 ppb)is much higher than that of the primitive mantle and global ophiolitic mantle peridotites.The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios(i.e.,0.8-2.9)suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites.The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites,which have concave downward or flat PGE-distribution patterns.Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements(e.g.,LILE and LREE)and higher Pd/Ir ratio(1.1-5.9)reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone(SSZ)tectonic setting.Also,the Shergol mafic intrusives and Dras mafic volcanics,associated with the studied peridotites,have high^(143)Nd/^(144)Nd ratios(i.e.,0.512908-0.513078 and 0.512901-0.512977,respectively)and positiveε_(Nd)(t)(calculated for t=140 Ma)values(i.e.,+5.3 to+8.6 and+5.1 to+6.6,respectively),indicating derivation from depleted mantle sources within an intra-oceanic arc setting,similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya.The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.展开更多
The Huatung Basin(20°30’-23°30’N/121°30’123°E;maximum water depth:5500 m) locates east off Taiwan.It is bordered by the Coastal Range of Taiwan and the North Luzon Arc to the west,the West Phili...The Huatung Basin(20°30’-23°30’N/121°30’123°E;maximum water depth:5500 m) locates east off Taiwan.It is bordered by the Coastal Range of Taiwan and the North Luzon Arc to the west,the West Philippine Sea to the east and the展开更多
The Durkan Complex is a key tectonic element of the Makran accretionary prism(SE Iran)and it has been interpreted as representing a continental margin succession.We present here a multidisciplinary study of the wester...The Durkan Complex is a key tectonic element of the Makran accretionary prism(SE Iran)and it has been interpreted as representing a continental margin succession.We present here a multidisciplinary study of the western Durkan Complex,which is based on new geological,stratigraphic,biostratigraphic data,as well as geochemical data of the volcanic and meta-volcanic rocks forming this complex.Our data show that this complex consists of distinct tectonic slices showing both non-metamorphic and very low-grade metamorphic deformed successions.Stratigraphic and biostratigraphic data allow us to recognize three types of successions.Type-Ⅰis composed by a Coniacian-early Campanian pelagic succession with intercalation of pillow lavas and minor volcaniclastic rocks.Type-Ⅱsuccession includes a volcanic sequence passing to a volcano-sedimentary sequence with Cenomanian pelagic limestones,followed by a hemipelagic sequence.This succession is characterized by abundant mass-transport deposits.Type-Ⅲsuccession includes volcanic and volcano-sedimentary sequences,which are stratigraphically covered by a Cenomanian platform succession.The latter is locally followed by a hemipelagic sequence.The volcanic rocks in the different successions show alkaline geochemical affinity,suggesting an origin from an oceanic within-plate setting.Our new results indicate that the western Durkan Complex represents fragments of seamounts tectonically incorporated in the Makran accretionary wedge during the latest Late Cretaceous-Paleocene.We propose that incorporation of seamounts in the frontal prism caused a shortening of the whole convergent margin and possibly contributed to controlling the deformation style in the Makran Accretionary Wedge during Late Cretaceous-Paleocene times.展开更多
Precise taxonomy and the chronostratigraphic calibration of the Middle Eocene Alveolina from Central Iran is here undertaken from the Chah-Talkh section of the southern Sabzevar region(Central Iran). We have identifie...Precise taxonomy and the chronostratigraphic calibration of the Middle Eocene Alveolina from Central Iran is here undertaken from the Chah-Talkh section of the southern Sabzevar region(Central Iran). We have identified Alveolina kieli, Alveolina stercusmuris and Alveolina nuttalli along with the new species Alveolina ozcani n. sp. that we include into the Alveolina elliptica group. We have also found Nummulites uroniensis, Nummulites obesus and Nummulites cf. verneuili and associated calcareous nannofossils that look reliable to make thoughtful correlations with the Shallow Benthic Zones(SBZ). The foraminiferal biostratigraphy suggests an assignment to the upper part of the lower Lutetian-lower part of the middle Lutetian,SBZ13(Middle Eocene), further strengthened through the identification of the calcareous nannofossil NP14b-NP15b or CNE8-CNE10 biozones, providing a solid correlation with the global stratigraphic standards.展开更多
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
基金financially supported by the National Natural Science Foundation of China(grants 41673038,41521062)the Key Research Program of Frontier Sciences from CAS(QYZDB-SSW-DQC032)the Open Fund Project of State Key Laboratory of Lithospheric Evolution(201707)
文摘The nature(i.e., sub-oceanic, sub-arc or subcontinental) of ophiolitic mantle peridotites from the eastern Neo-Tethyan domain in southern Tibet has been hotly debated. This uncertainty limits our understanding of the history and evolution of the eastern Neo-Tethys Ocean. Here we present petrological, geochemical and Re-Os isotopic data for the mantle peridotites from the Dazhuqu ophiolite in the central segment of the Yarlung Zangbo suture zone, southern Tibet. Samples collected include both spinel lherzolites and spinel harzburgites. The lherzolites have spinel Cr~# [Cr/(Cr + Al), ~ 0.3–0.4] comparable to those of typical abyssal peridotites. In contrast, the harzburgites have spinel Cr~#(~0.3–0.7) overlapping with the ranges of both abyssal and fore-arc peridotites(Day et al., 2017;Parkinson and Pearce, 1998);two samples have spinel Cr~# higher than 0.6, which is probably ascribed to intense melt-rock interactions. Clinopyroxene trace element modeling indicates that the Dazhuqu mantle peridotites have experienced 0–6% garnetfacies melting followed by 10% –18% melting in the spinel stability field. This is similar to the degree of garnet-facies melting inferred for many abyssal peridotites(Hellebrand et al., 2002) and implies deep initial melting(> 85 km), which distinguishes the Dazhuqu mantle peridotites from fore-arc peridotites(commonly <80 km in origin). The Dazhuqu peridotites have unradiogenic 187 Os/188 Os of 0.11836–0.12922, which are commonly lower than the recommended value of primitive upper mantle(PUM)(Meisel et al., 2001). All but one samples yield relatively younger Re depletion ages(TRD = 0.06–0.81 Ga) with respect to the only one sample having an older TRD age of 1.66 Ga. Re-Os isotopes and highly siderophile element(HSE) compositions of the Dazhuqu peridotites are similar to those of abyssal peridotites(Day et al., 2017) and the Oman southern massifs(Hangh?j et al., 2010) but are distinct from noncratonic sub-continental lithospheric mantle(SCLM) xenoliths and sub-arc mantle. We emphasize the similarity between the Dazhuqu and Oman ophiolites, both representing Neo-Tethyan oceanic lithosphere and implying ridge–trench collision.
文摘End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42025601,41890811&92155203)。
文摘Southeast Asia is located at the intersection of the Tethys and Pacific domains. The superimposed effects of the two tectonic domains have resulted in complicated deep structure, surface magma responses, and dynamic processes of Southeast Asia. Based on the latest long-term passive seismic experiment and numerical modeling, this study reconstructs the dynamic processes of the closure of the Neo-Tethys Ocean and the formation of the curved subduction system in Southeast Asia since the Late Mesozoic. P-wave velocity structure shows a remnant of the Neo-Tethys subducted slab in the lower mantle beneath Southeast Asia at a depth of approximately 1500 km. On the Java-East Timor subduction zone, the remnant slab is coupled with the Indo-Australian subducting slab in the upper mantle with the same direction, while on the Sumatra subduction zone, the remnant slab is decoupled from the Indo-Australian subducting slab in different directions. The formation of the curved subduction system in Southeast Asia is resulted from the northward subdcutions of previous Neo-Tethys and current IndoAustralian Plate, and the westward subduction of the Pacific Plate since Mesozoic. The former is characterized by continuous subduction and subsequent continental block collision, forming the current continental lithosphere in Southeast Asia and the curve-shaped Sumatra-Java subduction zone;the latter is characterized by subduction retreat and back-arc spreading, forming the eastern Philippine subduction zone and a series of marginal sea basins. Since the Early Cretaceous, the opening of the North Australian Sea resulted in stagnation of the Australian Block in the high latitude area of the southern hemisphere for a long time.The North Australian Sea was dominated by out-dipping double subduction from 45 Ma, which resulted in rapid northward drifting of the Australian Block and final collision with the Sundaland.
基金supported by the National Natural Science Foundation of China (Grant Nos.42025201,92155001,41802062,41888101)the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No.2019QZKK0801)。
文摘The evolution and final closure of the Neo-Tethys Ocean are one of the most important geological events that have occurred on Earth since the Mesozoic.However,the evolution of the Neo-Tethys is not well constrained,in particular whether its opening occurred in the Permian or the Triassic and whether a plume was involved with its opening or not.In this study,we present geochronological and geochemical data for mafic igneous rocks in mélanges along the Yarlung Zangbo suture zone(YZSZ)in southern Tibet to constrain the timing and mechanism of opening the Neo-Tethys Ocean.Based on field observations,the YZSZ mélanges can be divided into three segments.The western(west of Zhongba)and eastern(Sangsang-Renbu)segments are composed of ocean plate stratigraphy representing accretionary complexes that formed during subduction of Neo-Tethyan oceanic lithosphere beneath the southern margin of the Asian continent.Mélanges in the central segment(Zhongba-eastern Saga)typically have a siliciclastic matrix,and represent Tethyan Himalayan strata that were structurally mixed with the southern margin of the Asian continent.Based on our and previously published geochemical data,the mafic rocks in the YZSZ mélanges are ocean island basalt(OIB)-like,with ages in the Late Permian-Middle Triassic,the Middle-Late Jurassic,and the Early Cretaceous,respectively.An OIB-like block with an age of ca.253 Ma is identified from the Zhongba mélanges in the western segment,and it is the oldest OIB lithology yet identified in the YZSZ mélanges related to the evolution of the Neo-Tethys Ocean.Geochemical features indicate that this OIB-like block is distinct from typical OIBs and would be formed during continental rifting to incipient seafloor spreading.In the framework of plate divergent-convergent coupling systems and based on literature data for early Middle Triassic seamounts,radiolarian cherts,and normal mid-ocean ridge basalt-like oceanic crust,we conclude that opening of the Yarlung Zangbo Neo-Tethys Ocean would mainly occur at~250–243 Ma in the Early Triassic,not later than the early phase of Middle Triassic.In addition,a mantle plume was not involved in opening the Yarlung Zangbo Neo-Tethys Ocean.On the other hand,we have also identified a suite of ca.160 Ma OIB-like basaltic sills from the Bainang mélanges in the eastern segment,which is the same age as the OIB lithologies previously reported in the Zhongba mélanges.Based on the sill-like occurrence and absence of plume-related rock associations in this region,the Bainang OIB-like rocks might result from Middle-Late Jurassic continental rifting in northern Gondwana.Magmatism related to this tectonic event is preserved in both the YZSZ mélanges and Himalayan strata,but its tectonic significance requires further investigation.Based on this study of the YZSZ mélanges and the previous studies of YZSZ ophiolites,Gangdese belt igneous rocks,and sedimentary rocks,we have reconstructed the entire Wilson Cycle of the Yarlung Zangbo Neo-Tethys Ocean,mainly involving continental rifting and ocean opening,subduction initiation,ultraslow-spreading ridge-trench conversion,subduction re-initiation,and oceanic closure and initial India-Asia collision for the tectonic emplacement of ophiolites.These processes were associated not only with magmatic flare-ups and lulls in the Gangdese belt but also with two stages of ophiolite obduction.Our data therefore provide new insights into the evolution of the Yarlung Zangbo Neo-Tethys Ocean and related Tethyan geodynamics.
基金supported by the National Natural Science Foundation of China(Grant No.41688103)the International Cooperation Program of the Chinese Academy of Sciences(Grant No.GJHZ1776)。
文摘The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.
文摘The basic granulite, which is considered to be the MORB based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of Burma and west Yunnan, east of Myitkyina suture in the eastern Burma. The laser micro-area 40Ar-39Ar technique is used to date the age of garnet
基金supported by NSFC Major Research Plan on‘‘West-Pacific Earth System Multispheric Interactions’’to Prof.Weidong Sun(Grant No.92258303)AND Prof.Tianyu Chen(Grant No.91858105)。
文摘At the beginning of the Cenozoic,the atmospheric CO_(2)concentration increased rapidly from~2000 ppmv at 60 Ma to~4600 ppmv at 51 Ma,which is 5–10 times higher than the present value,and then continuous declined from~51 to 34 Ma.The cause of this phenomenon is still not well understood.In this study,we demonstrate that the initiation of Cenozoic west Pacific plate subduction,triggered by the hard collision in the Tibetan Plateau,occurred at approximately 51 Ma,coinciding with the tipping point.The water depths of the Pacific subduction zones are mostly below the carbonate compensation depths,while those of the Neo-Tethys were much shallower before the collision and caused far more carbonate subducting.Additionally,more volcanic ashes erupted from the west Pacific subduction zones,which consume CO_(2).The average annual west Pacific volvano eruption is 1.11 km~3,which is higher than previous estimations.The amount of annual CO_(2)absorbed by chemical weathering of additional west Pacific volcanic ashes could be comparable to the silicate weathering by the global river.We propose that the initiation of the western Pacific subduction controlled the long-term reduction of atmospheric CO_(2)concentration.
基金supported by the China Postdoctoral Science Foundation(M2017612220)the Shandong Province Natural Science Foundation(Doctoral Funds,ZR2017BD033)
文摘The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3~=1.8 Ma and 229.9~1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene (47-52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features (A/CNK〈I.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive till(t) values ranging from +13.91 to +15.54 (mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma (mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic (-230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous sub- terranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.
基金supported by the DREAM project of MOST China 2016YFC0600408NSFC 91328204,41421062China Geological Survey (12120114015801)
文摘South China is famous for the extensive magmatism and polymetallic mineralization that took place there in the Mesozoic. Shilu is a large porphyry–skarn Cu–Mo deposit in the Yangchun Basin, South China. The lithology of the Shilu intrusion is granodiorite and quartz diorite, both of which are high-K calc-alkaline series, with high Sr([400 ppm) content along with low Y and Yb contents. Most of the samples have characteristics of adakite except for a few samples that have slightly higher Y and Yb contents, which may be plausibly explained by crustal contamination. Laser Ablation Inductively Coupled Plasma Mass Spectrometry zircon U–Pb dating revealed ages between 106.6 ± 1.3 and 103.9 ± 0.5 Ma, with multiple magmatic pulses. Molybdenite Re–Os isochron age of 102.2 ± 2.9 Ma(MSWD = 9.4) was determined, which is identical to the youngest zircon U–Pb age(103.9 ± 0.5 Ma) within error.The Shilu intrusion has high oxygen fugacity as indicated by high zircon Ce^(4+)/Ce^(3+) and Eu_N/Eu_N* ratios. Considering the geochemical characteristics(high Sr, and low Y and Yb contents), high oxygen fugacity, and copper mineralization of the Shilu intrusion, it was most likely formed by partial melting of a subducted young oceanic slab. Whole-rock Sr–Nd isotope-, zircon Hf isotope-, and whole-rock trace element analyses show that Shilu adakitic magmas may have interacted with type II enriched mantle and/or crustal materials during ascent. South China was affected by the Pacific tectonic regime to the east and the Neo-Tethys tectonic regime to the south in the Cretaceous. Based on the Pacific Plate drifting and rotation history, it is hard to explain how the Pacific Plate would have subducted and melted, forming adakitic rocks in the Shilu region. Considering the tectonic history of Southeast Asia and the South China Sea, the Neo-Tethys trench should have been much closer to the South China Block in the Cretaceous, and thus have had a greater impact on the South China Block. Based on the subduction direction, time of subduction,and distance between the Neo-Tethys subduction zone and the Shilu deposit, subduction of the Neo-Tethys ridge is the best mechanism for explaining the Shilu adakitic rocks and Cu–Mo mineralization.
基金supported by the Strategic Project of Science and Technology of Chinese Academy of Sciences (XDB050105003)the State Scholarship Fund of China (41272030)+1 种基金the National Basic Research Program of China (2012CB822001)IGCP608
文摘This is a new report on the early Eocene radiolarian fauna from the Sangdanlin section in the Gyirong region, along the southern margin of the Yarlung Zangbo Suture Zone. The Sangdanlin section measured in this study is divided into three lithostratigraphic units from bottom to top: the Zongzhuo, Sangdanlin, and Zheya formations. Abundant radiolarian fossils were obtained from the Sangdanlin section and 54 species of 30 genera were identified and assigned as follows: Cryptamphorella conara-C. macropora the late Cretaceous Zone and Amphis_phaera coronate, Bur)ella tetradica-Bekoma campechensis, and B.bidartensis-B. divaricata the Paleocene-early Eocene Interval Zones. The Paleocene- early Eocene radiolarian zones are comparable to the radiolarian zones RP4-RP8 in New Zealand. Based on the data of radiolaria and lithofacies, it is suggested that the Zongzhuo Formation should be deposited along the base of the north-facing, continental slope of the Greater Indian continental margin, and the Sangdanlin Formation should be a deep marine, sedimentary sequence located in a foreland basin. The early Eocene radiolarian fauna in the Sangdanlin Formation constrains the initial age of the India-Asia collision to no later than 53.6 Ma.
文摘According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An immature volcanic arc developed in Taniantaweng (Tanen Taunggyi) Range, indicating the existence of an Embryo-Tethyan ocean. (2) The Palaeo-Tethyan stage (C-T2: During the Carboniferous the northern side of the Taniantaweng Range was the main domain of the Palaeo-Tethyan ocean, in which developed flysch sediments intercalated with bimodal volcanic rocks and oceanic tholeiite, and Pemian-Early Triassic are granites were superimposed on the Taniantaweng magmatic are; on the southern side the Dêngqên-Nujiang zone started secondary extension during the Carboniferous, in which the Nujiang ophiolite developed, and the Palaeo-Tethyan ocean closed before the Middle Triassic. (3) The Neo-Tethyan stage (T3-E): During the Late Triassic the Dêngqên zone developed into a relatively matural ocean basin, in which the Dêngqên ophiolite was formed. By the end of the Triassic intraocean subduction occurred, and the ocean domain was reduced gradually, and collided and closed by the end of the Early Jurassic, forming the Yazong mélange; then the Tethyan ocean was completely closed.
基金Supported by the SinoProbe Project(SinoProbe-2-6)National Natural Science Foundation of China(41073024,41273034)
文摘Processes accompanied the breakup of continents spreading of ocean floor and continent-ocean transition could trigger large scale melting of the mantle beneath the continent as well as the ocean,and produce mafic magmas with distinct
基金financially supported by the Programme of the China Geological Survey (No.1212011120608, No.1212011220907)the National Key Projects for Basic Research of China (No.2009CB421002, No.2011CB403102)+2 种基金NSF of China (No. 40672044)Program for Changjiang Scholars, Innovative Research Team in University (No.IRT1083)111 project (No.B07011)
文摘The Kejie pluton is located in the north of the Changning-Menglian suture zone. The rock types are mainly biotite-granite. Zircon LA-ICP-MS U-Pb dating indicates that the Kejie pluton emplaced at about 80-77 Ma, Late Cretaceous. The Kejie pluton samples are characterized by high SiO2 (71.68%-72.47%), K2O (4.73%-5.54%), total alkali (K2O + Na2O = 8.21%-8.53%), K2O/Na2O ratios (1.36-1.94) and low P2O5 (0.13%-0.17%), with A/CNK of 1.025-1.055; enriched in U, Th, and K, depleted in Ba, Nb, St, Ti, P and Eu. They are highly fractionated, slightly peraluminous 1-type granite. The two samples of the Kejie pluton give a large variation of εHf(t) values (-5.04 to 1.96) and Hf isotope crustal model ages of 1.16-1.5 Ga. Zircon Hf isotopes and zircon saturation temperatures of whole-rock (801℃-823℃) show that the mantle-derived materials maybe have played a vital role in the generation of the Kejie pluton. The Kejie pluton was most likely generated in a setting associated with the eastward subduction of the neo-Tethys ocean, where intrusion of mantle wedge basaltic magmas in the crust caused the anatexis of the latter, forming hybrid melts, which subsequently experienced high-degree fractional crystallization.
基金funded by the Fundamental Research Funds for the Central Universities in China(Grant No.19lgpy99)the National Natural Science Foundation of China(Grant Nos.41776056,41706055,41602231)the Natural Science Foundation of Guangdong Province(Grant Nos.2020A1515010501,2018B030311030)。
文摘In this study we present new mineral chemistry,whole-rock geochemical and zircon U-Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet(China).Modal analyses of these dykes gave averages of^40%-65%plagioclase and^35%-60%amphibole and small amounts of(igneous)clinopyroxene,epidote and opaque minerals.This mineral assemblage resembles that of typical orthoamphibolites.Nevertheless,due to the absence of foliation the investigated rocks are described as metamafic lithologies.These rocks have primitive mantle(PM)-normalized multi-element patterns with negative Nb and Ta anomalies as well as weak,negative Ti anomalies.In addition,they have initial 87Sr/86Sr ratios[(87Sr/86Sr)1]of0.702844-0.703581,initial 143Nd/144Nd ratios[(143Nd/144Nd)i]of 0.512891-0.512959 and high εNd(t)values(+7.9 to+9.3).Uranium-Pb ages of magmatic zircons separated from the investigated metamafic dykes indicate that the parental melts of their protoliths intruded the Sangsang mantle at^119.0-118.5 Ma.The metamorphic mineral assemblages recognized in the investigated dykes are suggestive of a retrograde metamorphic process,from(epidote-)amphibolite facies(~470-610℃,-1.9-4.3 kbar)and to prehnitepumpellyite facies(≤280℃,<3 kbar),active within a rift-produced oceanic lithosphere.Microtextural and geochemical data suggest that the protoliths of the dykes were most likely massive gabbros.Compositional data show that the parental magmas of the gabbroic protoliths were generated by melting of a depleted mantle(DM)source that had been weakly modified by fluids emanating from a subducted oceanic lithospheric slab.The age of the gabbroic protoliths is slightly younger than the existing ages for ophiolites from the central Yarlung-Zangbo Suture Zone(YZSZ)in the literature(~129-123 Ma).We,therefore,suggest that the gabbroic protoliths of the Sangsang metamafic dykes were formed in an incipient forearc setting during Neo-Tethyan subduction reinitiation(Aptian).Our tectonomagmatic model provides insights into the igneous accretion and postsolidification evolution of the oceanic lithosphere in South Tibet.
基金Council of Scientific and Industrial Research(CSIR),New Delhi for providing financial assistance in the form of Senior Research Fellowship(CSIR-SRF)DST-SERB,New Delhi,for funding the EPMA National facility at Banaras Hindu University.
文摘Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Suru Valley peridotites(∑PGE=96-180 ppb)is much higher than that of the primitive mantle and global ophiolitic mantle peridotites.The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios(i.e.,0.8-2.9)suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites.The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites,which have concave downward or flat PGE-distribution patterns.Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements(e.g.,LILE and LREE)and higher Pd/Ir ratio(1.1-5.9)reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone(SSZ)tectonic setting.Also,the Shergol mafic intrusives and Dras mafic volcanics,associated with the studied peridotites,have high^(143)Nd/^(144)Nd ratios(i.e.,0.512908-0.513078 and 0.512901-0.512977,respectively)and positiveε_(Nd)(t)(calculated for t=140 Ma)values(i.e.,+5.3 to+8.6 and+5.1 to+6.6,respectively),indicating derivation from depleted mantle sources within an intra-oceanic arc setting,similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya.The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.
文摘The Huatung Basin(20°30’-23°30’N/121°30’123°E;maximum water depth:5500 m) locates east off Taiwan.It is bordered by the Coastal Range of Taiwan and the North Luzon Arc to the west,the West Philippine Sea to the east and the
基金funded by Darius Project(Head M.Marroni)by the PRA project of the Pisa University(Head S.Rocchi),grants from IGG-CNRFAR-2018 Project of the Ferrara University(Head E.S.and V.L.)。
文摘The Durkan Complex is a key tectonic element of the Makran accretionary prism(SE Iran)and it has been interpreted as representing a continental margin succession.We present here a multidisciplinary study of the western Durkan Complex,which is based on new geological,stratigraphic,biostratigraphic data,as well as geochemical data of the volcanic and meta-volcanic rocks forming this complex.Our data show that this complex consists of distinct tectonic slices showing both non-metamorphic and very low-grade metamorphic deformed successions.Stratigraphic and biostratigraphic data allow us to recognize three types of successions.Type-Ⅰis composed by a Coniacian-early Campanian pelagic succession with intercalation of pillow lavas and minor volcaniclastic rocks.Type-Ⅱsuccession includes a volcanic sequence passing to a volcano-sedimentary sequence with Cenomanian pelagic limestones,followed by a hemipelagic sequence.This succession is characterized by abundant mass-transport deposits.Type-Ⅲsuccession includes volcanic and volcano-sedimentary sequences,which are stratigraphically covered by a Cenomanian platform succession.The latter is locally followed by a hemipelagic sequence.The volcanic rocks in the different successions show alkaline geochemical affinity,suggesting an origin from an oceanic within-plate setting.Our new results indicate that the western Durkan Complex represents fragments of seamounts tectonically incorporated in the Makran accretionary wedge during the latest Late Cretaceous-Paleocene.We propose that incorporation of seamounts in the frontal prism caused a shortening of the whole convergent margin and possibly contributed to controlling the deformation style in the Makran Accretionary Wedge during Late Cretaceous-Paleocene times.
基金supported financially by the Vice Chancellor for Research and Technology at University of Isfahan。
文摘Precise taxonomy and the chronostratigraphic calibration of the Middle Eocene Alveolina from Central Iran is here undertaken from the Chah-Talkh section of the southern Sabzevar region(Central Iran). We have identified Alveolina kieli, Alveolina stercusmuris and Alveolina nuttalli along with the new species Alveolina ozcani n. sp. that we include into the Alveolina elliptica group. We have also found Nummulites uroniensis, Nummulites obesus and Nummulites cf. verneuili and associated calcareous nannofossils that look reliable to make thoughtful correlations with the Shallow Benthic Zones(SBZ). The foraminiferal biostratigraphy suggests an assignment to the upper part of the lower Lutetian-lower part of the middle Lutetian,SBZ13(Middle Eocene), further strengthened through the identification of the calcareous nannofossil NP14b-NP15b or CNE8-CNE10 biozones, providing a solid correlation with the global stratigraphic standards.