Background In the demanding field of live news broadcasting,the intricate studio production procedures and tight schedules pose significant challenges for physical rehearsals by cameramen.This paper explores the desig...Background In the demanding field of live news broadcasting,the intricate studio production procedures and tight schedules pose significant challenges for physical rehearsals by cameramen.This paper explores the design and implementation of a lightweight virtual news previsualization system,leveraging virtual production technology and interaction design methods to address the lack of fidelity in presentations and manipulations,and the quantitative feedback of rehearsal effects in previous virtual approaches.Methods Our system,Previs-Real,is informed by user investigation with professional cameramen and studio technicians,and adheres to principles of high fidelity,accurate replication of actual hardware operations,and real-time feedback on rehearsal results.The system's software and hardware development are implemented based on Unreal Engine and accompanying toolsets,incorporating cutting-edge modeling and camera calibration methods.Results We validated Previs-Real through a user study,demonstrating superior performance in previsualization shooting tasks using the virtual system compared to traditional camera setups.The findings,supported by both objective performance metrics and subjective responses,underline Previs-Real's effectiveness and potential in transforming news broadcasting rehearsals.Conclusions Previs-Real eliminates the requirement for complex equipment interconnections and team coordination inherent in a physical studio by implementing methodologies complying the above principles,objectively resulting in a lightweight design of applicable version of virtual news previsualization system.It offers a novel solution to the challenges in news studio previsualization by focusing on key operational features rather than full environment replication.This design approach is equally effective in the process of designing lightweight systems in other fields.展开更多
News feed is one of the potential information providing sources which give updates on various topics of different domains.These updates on various topics need to be collected since the domain specific interested users...News feed is one of the potential information providing sources which give updates on various topics of different domains.These updates on various topics need to be collected since the domain specific interested users are in need of important updates in their domains with organized data from various sources.In this paper,the news summarization system is proposed for the news data streams from RSS feeds and Google news.Since news stream analysis requires live content,the news data are continuously collected for our experimentation.Themajor contributions of thiswork involve domain corpus based news collection,news content extraction,hierarchical clustering of the news and summarization of news.Many of the existing news summarization systems lack in providing dynamic content with domain wise representation.This is alleviated in our proposed systemby tagging the news feed with domain corpuses and organizing the news streams with the hierarchical structure with topic wise representation.Further,the news streams are summarized for the users with a novel summarization algorithm.The proposed summarization system generates topic wise summaries effectively for the user and no system in the literature has handled the news summarization by collecting the data dynamically and organizing the content hierarchically.The proposed system is compared with existing systems and achieves better results in generating news summaries.The Online news content editors are highly benefitted by this system for instantly getting the news summaries of their domain interest.展开更多
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
This study investigated the ideological use of linguistics features in online news articles published by The Zimbab^we Herald Onl~^^e newspaper and The Z^^bab^ea^Independent Online newspaper. The data was gathered dur...This study investigated the ideological use of linguistics features in online news articles published by The Zimbab^we Herald Onl~^^e newspaper and The Z^^bab^ea^Independent Online newspaper. The data was gathered during the period between 2008 and 2016 where there was media hype regarding the Zimbabwean political and economic instability. During this period in question Zimbabwe has had a constant phase of bad political and economic instability. Therefore, this publication is very crucial as it comes at a moment when Zimbabwe is undergoing its worst political and economic phase in years.Even though Zimbabwe's political situation seems to be unstable, the current government is adamant that the situation will get better before its its next presidential election in 2018. In 2009 the two political parties Zanu- PF and MDC forged a Unity Government, the end of the unity- government triggered power struggles within both Zanu- PF and MDC, which made Zimbabwean politics even more complicated. Consequently, the current study made use of thirty editorial articles ranging between 900 tokens to 1200 tokens. All the files gathered were transferred into text files so that they could be easily transferable into Antconc 3.2.1, which is a concordance software programme used in corpus linguistics to analyze written corpora. The lexical features that were identified in the study were analyzed through the use of Fairclough5s (1989) Critical Discourse Analysis (CDA) whilst grammatical features such as plurality, person and tense were analyzed through the use of Halliday5s (1985) Systemic Functional Grammar. The findings from this study revealed that journalists of the articles from The Zimbabwe Herald Online newspaper made use of linguistic and grammatical features that were meant to maintain Zanu- PF ideologies whilst corpus from The Zimbabwean Independent Online newspaper revealed the use of linguistic features that favoured the ideologies of the MDC.展开更多
This paper conducts the analysis on development of the basic English extensive reading system and the applications on the reading teaching of sports news. Extensive reading of text or material is dead and cannot provi...This paper conducts the analysis on development of the basic English extensive reading system and the applications on the reading teaching of sports news. Extensive reading of text or material is dead and cannot provide a teaching model. How to talk about what to proceed from reality, according to the principle of gradual and orderly, according to the level of the students and the ability to accept. English newspapers as fresh language, popular novel, close to the life of a corpus source that is the college English teaching has always attached importance to the reference materials. According to the rhetorical characteristics of English newspapers, we set the course, it is best to learn some rhetorical knowledge after the students to open the course, English majors can learn after the rhetoric can also be extended as the rhetoric class and homework. This paper proposes the new idea of dealing with mentioned issues that will promote the development of reading teaching of sports news.展开更多
Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recomm...Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.展开更多
News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension indep...News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension independently,ignoring the interconnections between different aspects.This paper proposes a novel news media bias and factuality profiling framework assisted by correlated features.This framework models the relationship and interaction between media bias and factuality,utilizing this relationship to assist in the prediction of profiling results.Our approach extracts features independently while aligning and fusing them through recursive convolu-tion and attention mechanisms,thus harnessing multi-scale interactive information across different dimensions and levels.This method improves the effectiveness of news media evaluation.Experimental results indicate that our proposed framework significantly outperforms existing methods,achieving the best performance in Accuracy and F1 score,improving by at least 1%compared to other methods.This paper further analyzes and discusses based on the experimental results.展开更多
Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion...Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models.展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t...With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.展开更多
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive information.Fake news,a prevalent issue,particularly on social media,complicates the assessment of news credibility.The pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing opinions.As the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful consequences.Despite numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or inconsistencies.Our study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news detection.We employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document Frequency.This comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news detection.Our findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and reliability.Moreover,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world scenarios.We introduce a pioneering ensemble technique that leverages both machine-learning and deep-learning classifiers.To identify the optimal ensemble configuration,we systematically tested various combinations.Experimental evaluations conducted on three diverse datasets related to fake news demonstrate the exceptional performance of our proposed ensemble model.Achieving remarkable accuracy levels of 97%,99%,and 98%on Dataset 1,Dataset 2,and Dataset 3,respectively,our approach showcases robustness and effectiveness in discerning fake news amidst the complexities of contemporary information landscapes.This research contributes to the advancement of fake news detection methodologies and underscores the significance of integrating feature extraction and feature selection strategies for enhanced performance,especially in the context of intricate,high-dimensional datasets.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
Beijing,Hanoi vow to advance traditional ties.China rolled out the red carpet on August 19 for Vietnam’s top leader To Lam,and the two socialist countries vowed to further enhance their comprehensive strategic cooper...Beijing,Hanoi vow to advance traditional ties.China rolled out the red carpet on August 19 for Vietnam’s top leader To Lam,and the two socialist countries vowed to further enhance their comprehensive strategic cooperative partnership and advance the building of a community with a shared future that carries strategic significance.展开更多
CPC Central Committee Adopts Resolution on Further Deepening Reform Comprehensively The 20th Central Committee of the Communist Party of China(CPC)adopted a resolution on further deepening reform comprehensively to ad...CPC Central Committee Adopts Resolution on Further Deepening Reform Comprehensively The 20th Central Committee of the Communist Party of China(CPC)adopted a resolution on further deepening reform comprehensively to advance Chinese modernization at its third plenary session held in Beijing from July 15 to 18,2024.Xi Jinping,Li Qiang,Zhao Leji,Wang Huning,Cai Qi,Ding Xuexiang and Li Xi attended the session.展开更多
Linked by mountains and rivers,China and the five other Lancang-Mekong countries share cultural similarities and are as close as a big family.The year 2023 marked the 10th anniversary of the Belt and Road Initiative(B...Linked by mountains and rivers,China and the five other Lancang-Mekong countries share cultural similarities and are as close as a big family.The year 2023 marked the 10th anniversary of the Belt and Road Initiative(BRI),the 10th anniversary of the vision of building a community with a shared future for mankind,and the 10th anniversary of the principle of amity,sincerity.展开更多
The Chinese economy has maintained good recovery momentum,beginning the year on a solid note as the country’s macro policies took effect,official data showed on March 18.Given its solid performance in January and Feb...The Chinese economy has maintained good recovery momentum,beginning the year on a solid note as the country’s macro policies took effect,official data showed on March 18.Given its solid performance in January and February,China has the conditions and support to achieve its full-year growth target of around 5 percent for 2024 through enhanced efforts,the National Bureau of Statistics(NBS)spokesperson Liu Aihua said.展开更多
“The Era of Foreign Newspapers”refers to the period from the emergence of the first modern newspaper in Hankow in 1866 to 1900 when Wuhan’s newspaper industry was dominated by foreign newspapers.The well-known fore...“The Era of Foreign Newspapers”refers to the period from the emergence of the first modern newspaper in Hankow in 1866 to 1900 when Wuhan’s newspaper industry was dominated by foreign newspapers.The well-known foreign newspapers in Wuhan during this period mainly included Hankow Times,The New Edition of Tan Dao,and Han Bao.The subjective purpose of foreigners’early endeavors of running newspapers in Wuhan was mainly to use newspapers to convey business information,spread religion,or influence public opinion in order to safeguard their own interests in China.However,foreign newspapers in this period played a constructive role in the development of Wuhan’s local society:It gave birth to the emergence and development of the first private and official newspapers in Wuhan and shaped the local social,cultural,and political changes in Wuhan in the late Qing Dynasty.Sorting out and explaining the constructive influence of Hankow’s foreign newspaper in this period has certain significance for restoring the social and political landscape of Wuhan at that time and better understanding the context of historical development.展开更多
In the context of globalization,zero translation words are more and more frequently used in news discourse.This article aims to explore the reasons for the frequent use of zero translation words in news discourse and ...In the context of globalization,zero translation words are more and more frequently used in news discourse.This article aims to explore the reasons for the frequent use of zero translation words in news discourse and their impact on news discourse from the perspectives of translation studies and journalism and communication studies.展开更多
Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an impo...Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an important goal of basic human rights protection and data legislation.Personal information protection involves comprehensive considerations among various values,and the balanced structure between personal information rights and other rights systems has become the key to legislation on personal information protection.The“news exception”is a prominent example representing the balanced structure of personal information protection.As a societal instrument,news not only pursues commercial value but also advocates freedom of expression and public value.There exists a natural tension between news and personal information protection.The“news exception”of the balanced structure has become a fundamental requirement and important connotation for constructing a system for protecting personal information.The balanced structure of the“news exception”requires a reasonable definition of the concept and purpose of news,and both the self-discipline within the news industry and the judicial intervention are necessary factors.China has preliminarily completed the top-level legislative design of personal information protection through laws such as the Civil Code of the People’s Republic of China(PRC)and the Personal Information Protection Law of the People’s Republic of China.However,the balanced mechanism of the“news exception”has not yet been fully established in China.A“news exception”based on the ideas of balance and the improvement of the institutional system is the fundamental principle for the development of China’s personal information protection system.展开更多
基金Supported by Research Project of the State Key Laboratory of Ultra HD Video and Audio Production and Broadcasting Presentation of China Media Group(CMGSKL2021KF015)the Natural Science Foundation of China(62332019).
文摘Background In the demanding field of live news broadcasting,the intricate studio production procedures and tight schedules pose significant challenges for physical rehearsals by cameramen.This paper explores the design and implementation of a lightweight virtual news previsualization system,leveraging virtual production technology and interaction design methods to address the lack of fidelity in presentations and manipulations,and the quantitative feedback of rehearsal effects in previous virtual approaches.Methods Our system,Previs-Real,is informed by user investigation with professional cameramen and studio technicians,and adheres to principles of high fidelity,accurate replication of actual hardware operations,and real-time feedback on rehearsal results.The system's software and hardware development are implemented based on Unreal Engine and accompanying toolsets,incorporating cutting-edge modeling and camera calibration methods.Results We validated Previs-Real through a user study,demonstrating superior performance in previsualization shooting tasks using the virtual system compared to traditional camera setups.The findings,supported by both objective performance metrics and subjective responses,underline Previs-Real's effectiveness and potential in transforming news broadcasting rehearsals.Conclusions Previs-Real eliminates the requirement for complex equipment interconnections and team coordination inherent in a physical studio by implementing methodologies complying the above principles,objectively resulting in a lightweight design of applicable version of virtual news previsualization system.It offers a novel solution to the challenges in news studio previsualization by focusing on key operational features rather than full environment replication.This design approach is equally effective in the process of designing lightweight systems in other fields.
文摘News feed is one of the potential information providing sources which give updates on various topics of different domains.These updates on various topics need to be collected since the domain specific interested users are in need of important updates in their domains with organized data from various sources.In this paper,the news summarization system is proposed for the news data streams from RSS feeds and Google news.Since news stream analysis requires live content,the news data are continuously collected for our experimentation.Themajor contributions of thiswork involve domain corpus based news collection,news content extraction,hierarchical clustering of the news and summarization of news.Many of the existing news summarization systems lack in providing dynamic content with domain wise representation.This is alleviated in our proposed systemby tagging the news feed with domain corpuses and organizing the news streams with the hierarchical structure with topic wise representation.Further,the news streams are summarized for the users with a novel summarization algorithm.The proposed summarization system generates topic wise summaries effectively for the user and no system in the literature has handled the news summarization by collecting the data dynamically and organizing the content hierarchically.The proposed system is compared with existing systems and achieves better results in generating news summaries.The Online news content editors are highly benefitted by this system for instantly getting the news summaries of their domain interest.
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
文摘This study investigated the ideological use of linguistics features in online news articles published by The Zimbab^we Herald Onl~^^e newspaper and The Z^^bab^ea^Independent Online newspaper. The data was gathered during the period between 2008 and 2016 where there was media hype regarding the Zimbabwean political and economic instability. During this period in question Zimbabwe has had a constant phase of bad political and economic instability. Therefore, this publication is very crucial as it comes at a moment when Zimbabwe is undergoing its worst political and economic phase in years.Even though Zimbabwe's political situation seems to be unstable, the current government is adamant that the situation will get better before its its next presidential election in 2018. In 2009 the two political parties Zanu- PF and MDC forged a Unity Government, the end of the unity- government triggered power struggles within both Zanu- PF and MDC, which made Zimbabwean politics even more complicated. Consequently, the current study made use of thirty editorial articles ranging between 900 tokens to 1200 tokens. All the files gathered were transferred into text files so that they could be easily transferable into Antconc 3.2.1, which is a concordance software programme used in corpus linguistics to analyze written corpora. The lexical features that were identified in the study were analyzed through the use of Fairclough5s (1989) Critical Discourse Analysis (CDA) whilst grammatical features such as plurality, person and tense were analyzed through the use of Halliday5s (1985) Systemic Functional Grammar. The findings from this study revealed that journalists of the articles from The Zimbabwe Herald Online newspaper made use of linguistic and grammatical features that were meant to maintain Zanu- PF ideologies whilst corpus from The Zimbabwean Independent Online newspaper revealed the use of linguistic features that favoured the ideologies of the MDC.
文摘This paper conducts the analysis on development of the basic English extensive reading system and the applications on the reading teaching of sports news. Extensive reading of text or material is dead and cannot provide a teaching model. How to talk about what to proceed from reality, according to the principle of gradual and orderly, according to the level of the students and the ability to accept. English newspapers as fresh language, popular novel, close to the life of a corpus source that is the college English teaching has always attached importance to the reference materials. According to the rhetorical characteristics of English newspapers, we set the course, it is best to learn some rhetorical knowledge after the students to open the course, English majors can learn after the rhetoric can also be extended as the rhetoric class and homework. This paper proposes the new idea of dealing with mentioned issues that will promote the development of reading teaching of sports news.
基金This research was funded by Beijing Municipal Social Science Foundation(23YTB031)the Fundamental Research Funds for the Central Universities(CUC23ZDTJ005).
文摘Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.
基金funded by“the Fundamental Research Funds for the Central Universities”,No.CUC23ZDTJ005.
文摘News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension independently,ignoring the interconnections between different aspects.This paper proposes a novel news media bias and factuality profiling framework assisted by correlated features.This framework models the relationship and interaction between media bias and factuality,utilizing this relationship to assist in the prediction of profiling results.Our approach extracts features independently while aligning and fusing them through recursive convolu-tion and attention mechanisms,thus harnessing multi-scale interactive information across different dimensions and levels.This method improves the effectiveness of news media evaluation.Experimental results indicate that our proposed framework significantly outperforms existing methods,achieving the best performance in Accuracy and F1 score,improving by at least 1%compared to other methods.This paper further analyzes and discusses based on the experimental results.
基金supported by the National Natural Science Foundation of China(No.62302540)with author Fangfang Shan.For more information,please visit their website at https://www.nsfc.gov.cn/(accessed on 31/05/2024)+3 种基金Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)where Fangfang Shan is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/(accessed on 31/05/2024)supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html(accessed on 31/05/2024).
文摘Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models.
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金The authors are highly thankful to the National Social Science Foundation of China(20BXW101,18XXW015)Innovation Research Project for the Cultivation of High-Level Scientific and Technological Talents(Top-Notch Talents of theDiscipline)(ZZKY2022303)+3 种基金National Natural Science Foundation of China(Nos.62102451,62202496)Basic Frontier Innovation Project of Engineering University of People’s Armed Police(WJX202316)This work is also supported by National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Basic Scientific Research,and Engineering University of PAP’s Funding for Education and Teaching.Natural Science Foundation of Shaanxi Province(No.2023-JCYB-584).
文摘With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICT Creative Consilience Program(IITP-2024-2020-0-01819)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive information.Fake news,a prevalent issue,particularly on social media,complicates the assessment of news credibility.The pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing opinions.As the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful consequences.Despite numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or inconsistencies.Our study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news detection.We employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document Frequency.This comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news detection.Our findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and reliability.Moreover,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world scenarios.We introduce a pioneering ensemble technique that leverages both machine-learning and deep-learning classifiers.To identify the optimal ensemble configuration,we systematically tested various combinations.Experimental evaluations conducted on three diverse datasets related to fake news demonstrate the exceptional performance of our proposed ensemble model.Achieving remarkable accuracy levels of 97%,99%,and 98%on Dataset 1,Dataset 2,and Dataset 3,respectively,our approach showcases robustness and effectiveness in discerning fake news amidst the complexities of contemporary information landscapes.This research contributes to the advancement of fake news detection methodologies and underscores the significance of integrating feature extraction and feature selection strategies for enhanced performance,especially in the context of intricate,high-dimensional datasets.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.
文摘Beijing,Hanoi vow to advance traditional ties.China rolled out the red carpet on August 19 for Vietnam’s top leader To Lam,and the two socialist countries vowed to further enhance their comprehensive strategic cooperative partnership and advance the building of a community with a shared future that carries strategic significance.
文摘CPC Central Committee Adopts Resolution on Further Deepening Reform Comprehensively The 20th Central Committee of the Communist Party of China(CPC)adopted a resolution on further deepening reform comprehensively to advance Chinese modernization at its third plenary session held in Beijing from July 15 to 18,2024.Xi Jinping,Li Qiang,Zhao Leji,Wang Huning,Cai Qi,Ding Xuexiang and Li Xi attended the session.
文摘Linked by mountains and rivers,China and the five other Lancang-Mekong countries share cultural similarities and are as close as a big family.The year 2023 marked the 10th anniversary of the Belt and Road Initiative(BRI),the 10th anniversary of the vision of building a community with a shared future for mankind,and the 10th anniversary of the principle of amity,sincerity.
文摘The Chinese economy has maintained good recovery momentum,beginning the year on a solid note as the country’s macro policies took effect,official data showed on March 18.Given its solid performance in January and February,China has the conditions and support to achieve its full-year growth target of around 5 percent for 2024 through enhanced efforts,the National Bureau of Statistics(NBS)spokesperson Liu Aihua said.
基金supported by the Department of Education,Hubei Province(Grant No.22Q009).
文摘“The Era of Foreign Newspapers”refers to the period from the emergence of the first modern newspaper in Hankow in 1866 to 1900 when Wuhan’s newspaper industry was dominated by foreign newspapers.The well-known foreign newspapers in Wuhan during this period mainly included Hankow Times,The New Edition of Tan Dao,and Han Bao.The subjective purpose of foreigners’early endeavors of running newspapers in Wuhan was mainly to use newspapers to convey business information,spread religion,or influence public opinion in order to safeguard their own interests in China.However,foreign newspapers in this period played a constructive role in the development of Wuhan’s local society:It gave birth to the emergence and development of the first private and official newspapers in Wuhan and shaped the local social,cultural,and political changes in Wuhan in the late Qing Dynasty.Sorting out and explaining the constructive influence of Hankow’s foreign newspaper in this period has certain significance for restoring the social and political landscape of Wuhan at that time and better understanding the context of historical development.
文摘In the context of globalization,zero translation words are more and more frequently used in news discourse.This article aims to explore the reasons for the frequent use of zero translation words in news discourse and their impact on news discourse from the perspectives of translation studies and journalism and communication studies.
文摘Protection of personal information is a significant issue in the construction of legal systems in various countries in the information age.Introducing a balanced approach for protecting personal information is an important goal of basic human rights protection and data legislation.Personal information protection involves comprehensive considerations among various values,and the balanced structure between personal information rights and other rights systems has become the key to legislation on personal information protection.The“news exception”is a prominent example representing the balanced structure of personal information protection.As a societal instrument,news not only pursues commercial value but also advocates freedom of expression and public value.There exists a natural tension between news and personal information protection.The“news exception”of the balanced structure has become a fundamental requirement and important connotation for constructing a system for protecting personal information.The balanced structure of the“news exception”requires a reasonable definition of the concept and purpose of news,and both the self-discipline within the news industry and the judicial intervention are necessary factors.China has preliminarily completed the top-level legislative design of personal information protection through laws such as the Civil Code of the People’s Republic of China(PRC)and the Personal Information Protection Law of the People’s Republic of China.However,the balanced mechanism of the“news exception”has not yet been fully established in China.A“news exception”based on the ideas of balance and the improvement of the institutional system is the fundamental principle for the development of China’s personal information protection system.