Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information,...Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information, without depth resolution. Here, we systematically apply a light-sheet illumination, a time-gated detection, and a deep-learning algorithm to yield high-contrast high-resolution volumetric images. To achieve a large Fo V(field of view) and minimize the scattering effect, we generate a light sheet as thin as 100.5 μm with a Rayleigh length of 8 mm to yield an axial resolution of 220 μm. To further suppress the background, we time-gate to only detect long lifetime luminescence achieving a high contrast of up to 0.45 Icontrast. To enhance the resolution, we develop an algorithm based on profile protrusions detection and a deep neural network and distinguish vasculature from a low-contrast area of 0.07 Icontrast to resolve the 100μm small vessels. The system can rapidly scan a volume of view of 75 × 55 × 20 mm3and collect 750 images within 6mins. By adding a scattering-based modality to acquire the 3D surface profile of the mice skin, we reveal the whole volumetric vasculature network with clear depth resolution within more than 1 mm from the skin. High-contrast large-scale 3D animal imaging helps us expand a new dimension in NIR-Ⅱ imaging.展开更多
Second near-infrared(NIR-Ⅱ)light triggered in-situ tumor vaccination(ISTV)represents one of the most promising strategies in boosting the whole-body antitumor immunity.While most of previously developed nano-adjuvant...Second near-infrared(NIR-Ⅱ)light triggered in-situ tumor vaccination(ISTV)represents one of the most promising strategies in boosting the whole-body antitumor immunity.While most of previously developed nano-adjuvants for NIR-Ⅱ-triggered ISTV are“all-in-one”formulations,which may indiscriminately damage both the tumor cells and the immune cells,limiting the overall effect of immune response.To overcome this obstacle,we designed a“cocktail”nano-adjuvant by physically mixing hyaluronidases(HAase)-decorated gold nanostars(HA)for NIR-Ⅱlight triggered in situ production of tumor-associated antigens and CpG functionalized gold nanospheres(CA)for immune cells activation.Compared to“all-in-one”formulation,the“cocktail”nano-adjuvants displayed a significantly stronger immune response on NIR-Ⅱlight induced dendritic cells(DCs)mutation and T cells differentiation,greater effect on tumor-growth inhibition,and higher efficacy in inhibition of pulmonary metastases.What is more,increasing the molar ratio of HA to CA led to an enhanced anticancer immune responses.This study highlight the nano-adjuvant formulation effects on the treatment of tumors with multiple targets.展开更多
Colorectal cancer(CRC) is one of the major causes of cancer-related mortality worldwide. Most near-infrared(NIR) agents used in clinical CRC treatment are at NIR-I(700–900 nm) window, which has limitations on deep ti...Colorectal cancer(CRC) is one of the major causes of cancer-related mortality worldwide. Most near-infrared(NIR) agents used in clinical CRC treatment are at NIR-I(700–900 nm) window, which has limitations on deep tissue, and fluorescent probes in the second NIR(1,000–1,700 nm) allow high-resolution bioimaging with deep tissue penetration. However, existing NIR-II fluorophores used in clinical are still rare. Herein, based on shielding-donor-acceptor-donor-shielding(S-D-A-D-S) scaffold, we developed an organic small-molecule fluorophore IR-BTGP with NIR-II emission for imaging-guided photothermal therapy(PTT) in CRC mice model. Amphiphilic IR-BTGP can be self-assembled into spherical nano-micelles, which presents reliable water solubility and photothermal conversion efficiency(30.2%). In vitro experiments indicate that cancer cells treated with IRBTGP were significantly killed upon 808 nm light irradiation. Furthermore, in vivo NIR-II fluorescence imaging confirms that IR-BTGP accumulates in the tumor region. Remarkably, a significant tumor inhibition rate(78.5%) was observed in tumorbearing mice when treated with IR-BTGP plus 808 nm irradiation. Therefore, this work shows that IR-BTGP holds great promise as an NIR-II fluorescence imaging-guided PTT platform for CRC in the future.展开更多
Multimodal imaging in the second near-infrared window(NIR-II)guided cancer therapy is a highly precise and efficient cancer theranostic strategy.However,it is still a challenge to develop activated NIR-II optical imag...Multimodal imaging in the second near-infrared window(NIR-II)guided cancer therapy is a highly precise and efficient cancer theranostic strategy.However,it is still a challenge to develop activated NIR-II optical imaging and therapy agents.In this study,we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod(AuNNR)and fluorescent down-conversion nanoparticles(DCNP)(AuNNR-DCNP Ve),showing remarkable and activated NIR-II fluorescence(FL)/NIR-II photoacoustic(PA)imaging performances.The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy.Interestingly,the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal.Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.展开更多
Near-infrared Ⅱ(NIR-Ⅱ)fluorescent nanoprobes hold great potential for biomedical applications.Elucidating the relationship between surface properties of NIR-Ⅱ nanoprobes and their biological behaviors is particular...Near-infrared Ⅱ(NIR-Ⅱ)fluorescent nanoprobes hold great potential for biomedical applications.Elucidating the relationship between surface properties of NIR-Ⅱ nanoprobes and their biological behaviors is particularly important for future probe design and their performance optimization.Despite the rapid development of NIR-Ⅱ nanoprobes,the distinct role of surface chirality on their biological fates has rarely been exploited.Herein,chiral NIR-Ⅱ fluorescent Ag_(2)S quantum dots(QDs)are synthesized to investigate the relationship between their chirality and biological functions at both in vitro and in vivo levels.D-/L-Ag_(2)S QDs exhibit significant differences on their interactions with serum proteins,which further affect the cellular uptake.As a result,D-Ag_(2)S QDs can be internalized with higher efficiency(over 2-fold)than that of L-Ag_(2)S QDs.Moreover,in vivo studies reveal that the chirality determines the primary localization of these chiral QDs,where a more efficient renal elimination of D-Ag_(2)S QDs was observed than that of L-Ag_(2)S QDs.Importantly,D-Ag_(2)S QDs show preferential accumulation in tumor region than that of L-Ag_(2)S QDs in orthotopic kidney tumor model,which points out a new avenue of enhancing targeting capabilities of nanoprobes by engineering their surface chirality.展开更多
Fluorescent NIR-Ⅱ imaging has a wide range of benefits not offered by other imaging modalities for biomedical applications, derived from its combination of high spatial and temporal resolution due to reduced photon a...Fluorescent NIR-Ⅱ imaging has a wide range of benefits not offered by other imaging modalities for biomedical applications, derived from its combination of high spatial and temporal resolution due to reduced photon absorption, scattering and tissue auto-fluorescence. Compared to the well-studied NIR-Ⅰ small-molecule fluorophores, the structures of NIR-Ⅱ fluorophores are scarce. To date, the main fluorophore units are composed of conjugated π system with a benzobisthiadiazole(BBTD) core and donor-acceptor-donor(D-A-D) structure. Herein, researchers Yang et al. and Zhang et al. have reported new NIR-Ⅱ probes ECX and FD-1080 respectively without a BBTD core which are highlighted.展开更多
Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness.Developing advanced phototheranostic agents with long emission wavelen...Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness.Developing advanced phototheranostic agents with long emission wavelength,excellent biocompatibility,great tumor-targeting capability,and efficient therapeutic effect is highly desirable.However,the mutual constraint between imaging and therapeutic functions usually hinders their wide applications in biomedical field.To balance this contradiction,we herein rationally designed and synthesized three novel tumor-targeted NIR-Ⅱ probes(QR-2PEG_(321),QR-2PEG_(1000),and QR-2PEG_(5000)) by conjugating three different chain lengths of PEG onto an integrin α_(v)β_(3)-targeted NIR-Ⅱ heptamethine cyanine fluorophore,respectively.In virtue of the essential amphiphilic characteristics of PEG polymers,these probes display various degree of aggregation in aqueous buffer accompanying with differential NIR-Ⅱ imaging and photothermal(PTT) therapeutic performance.Both in vitro and in vivo results have demonstrated that probe QR-2PEG_(5000) has the best NIR-Ⅱ imaging performance with prominent renal clearance,whereas QR-2PEG_(321)possesses excellent photoacoustic signal as well as PTT effect,which undoubtedly provides a promising toolbox for tumor diagnosis and therapy.We thus envision that these synthesized probes have great potential to be explored as a toolkit for precise diagnosis and treatment of malignant tumors.展开更多
Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tun...Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tuning,and in vivo imaging of NIR-Ⅱluminescent AuNCs.In this review,we briefly introduce the synthesis of NIR-Ⅱluminescent AuNCs using various surface ligands.We discuss the origins and properties of NIR-ⅡPL in AuNCs,and summarize the strategies for improving and/or tuning NIR-ⅡPL emissions.We also provide an overview of the recent progress in the application of AuNCs in tumor-targeted imaging,molecular imaging,and other areas(such as the sensitive imaging of bones,vessels,lymph nodes,etc.).Finally,we present the prospects and challenges in the field of NIR-Ⅱluminescent AuNCs and related imaging applications,expecting to offer comprehensive understanding of this field,and thereby deepening and broadening the biological application of AuNCs.展开更多
Ferroptosis(FPT),a novel form of programmed cell death,is characterized by overwhelming iron/reactive oxygen species(ROS)-dependent accumulation of lipid peroxidation(LPO).However,the insufficiency of endogenous iron ...Ferroptosis(FPT),a novel form of programmed cell death,is characterized by overwhelming iron/reactive oxygen species(ROS)-dependent accumulation of lipid peroxidation(LPO).However,the insufficiency of endogenous iron and ROS level limited the FPT therapeutic efficacy to a large extent.To overcome this obstacle,the bromodomain-containing protein 4(BRD_(4))-inhibitor(+)-JQ1(JQ1)and iron-supplement ferric ammonium citrate(FAC)-loaded gold nanorods(GNRs)are encapsulated into the zeolitic imidazolate framework-8(ZIF-8)to form matchbox-like GNRs@JF/ZIF-8 for the amplified FPT therapy.The existence of matchbox(ZIF-8)is stable in physiologically neutral conditions but degradable in acidic environment,which could prevent the loaded agents from prematurely reacting.Moreover,GNRs as the drug-carriers induce the photothermal therapy(PTT)effect under the irradiation of near-infraredⅡ(NIR-Ⅱ)light owing to the absorption by localized surface plasmon resonance(LSPR),while the hyperthermia also boosts the JQ1 and FAC releasing in the tumor microenvironment(TME).On one hand,the FAC-induced Fenton/Fenton-like reactions in TME can simultaneously generate iron(Fe^(3+)/Fe^(2+))and ROS to initiate the FPT treatment by LPO elevation.On the other hand,JQ1 as a small molecule inhibitor of BRD_(4)protein can amplify FPT through downregulating the expression of glutathione peroxidase 4(GPX4),thus inhibiting the ROS elimination and leading to the LPO accumulation.Both in vitro and in vivo studies reveal that this p H-sensitive nano-matchbox achieves obvious suppression of tumor growth with good biosafety and biocompatibility.As a result,our study points out a PTT combined iron-based/BRD_(4)-downregulated strategy for amplified ferrotherapy which also opens the door of future exploitation of ferrotherapy systems.展开更多
It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report ...It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report a molecular engineering approach to afford NIR-Ⅱ fluorophores with these merits based on fused-ring acceptor(FRA)molecules.Dioctyl 3,4-propylenedioxy thiophene(PDOT-C8)is utilized as the bridging donor to replace 3-ethylhexyloxy thiophene(3-EHOT),leading to more than 20 times enhancement of brightness.The nanofluorophores(NFs)based on the optimized CPTIC-4F molecule exhibit an emission peak of 1,110 nm with a fluorescence quantum yield(QY)of 0.39%(QY of IR-26 is 0.050%in dichloroethane as reference)and peak absorption coefficient of 14.5 x 10^4 M^-1·cm^-1 in aqueous solutions,which are significantly higher than those of 3-EHOT based COTIC-4F NFs.It is found that PDOT-C8 can weaken intermolecular aggregation,enhance protection of molecular backbone from water,and decrease backbone distortion,beneficial for the high brightness.Compared with indocyanine green with same injection dose,CPTIC-4F NFs show 10 times higher signal-to-background ratio for whole body vessels imaging at 1,300 nm long pass filters.展开更多
Phototheranostic with highly integrated functions is an attractive platform for cancer management. It remains challenging to develop a facile phototheranostic platform with complementary bimodal imaging and combinatio...Phototheranostic with highly integrated functions is an attractive platform for cancer management. It remains challenging to develop a facile phototheranostic platform with complementary bimodal imaging and combinational therapy capacity. Herein, the small-molecule cyanine IR780 loaded liposomes have been harnessed as a nanoplatform to simultaneously realize photoacoustic(PA)/the second near-infrared window(NIR-Ⅱ) fluorescence imaging and image-guided surgery/adjuvant photothermal therapy(PTT).This nanoplatform exhibits attractive properties like uniform controllable size, stable dispersibility, NIR-Ⅱ fluorescence emission, photothermal conversion, and biocompatibility. Benefiting from the complementary PA/NIR-Ⅱ fluorescence bimodal imaging, this nanoplatform was successfully applied in precise vasculature delineation and tumor diagnosis. Interestingly, the tumor was clearly detected by NIR-Ⅱ fluorescence imaging with the highest tumor-to-normal-tissue ratio up to 12.69, while signal interference from the liver was significantly reduced, due to the difference in the elimination rate of the nanoplatform in the liver and tumor. Under the precise guidance of the image, the tumor was accurately resected, and the simulated residual lesion after surgery was completely ablated by adjuvant PTT. This combined therapy showed improved antitumor efcacy over the individual surgery or PTT. This work develops a facile phototheranostic nanoplatform with great significance in accurately diagnosing and effectively treating tumors using simple NIR light irradiation.展开更多
Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics,and developing the oxygen production nanoplatforms received the widespread attention.However,it is remaining a challenge to structure a nano...Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics,and developing the oxygen production nanoplatforms received the widespread attention.However,it is remaining a challenge to structure a nanoplatform with hypoxia alleviation effect and imaging-guided cancer radiotherapy.Herein,we present a novel theranostics nanoplatform(Au NPs/UCNPs/WO_(3)@C)comprising of tungsten trioxide(WO3)that loaded gold nanoparticles(Au NPs)and up-conversion nanoparticles(UCNPs)for improved photoacoustic(PA)imaging performance in the second near infrared window(NIR-Ⅱ,900-1,700 nm).Au NPs/UCNPs/WO_(3)@C exhibited superior oxygen-generation effect and doxorubicin loading capacity,thus serving as an efficient radiosensitizer for radio-chemo anti-cancer therapy.Importantly,the accumulated Au NPs/UCNPs/WO_(3)@C in the tumor region led to the increased NIR-Ⅱ PA imaging signal and the blood oxygen saturation signal,which could enhance radiation sensitivity and accurately guiding cancer radiotherapy to reduce side effects on normal tissues.This study with proof-of-concept confirmed the multifaceted characteristics and encouraging potential of biomimetic Au NPs/UCNPs/WO_(3)@C for NIR-Ⅱ PA imaging-guided tumor therapeutics.展开更多
Dendritic cell(DC)vaccine is an effective strategy for cancer immunotherapy by carrying antigen into DCs and migrating these DCs to drain lymph nodes after inoculation.In this article,second near-infrared window(NIR-I...Dendritic cell(DC)vaccine is an effective strategy for cancer immunotherapy by carrying antigen into DCs and migrating these DCs to drain lymph nodes after inoculation.In this article,second near-infrared window(NIR-II)fluorescent nanoparticles have been used to uptake antigen and activate DCs.Ovalbumin(OVA),an antigen for immunization,can be loaded on the surface of these NIR-II fluorescent nanoparticles via electrostatic interaction by virtue of their functionalized poly(L-lysine)(PLL),which exhibits biocompatibility and strong selective interaction with OVA.In addition,these antigen-loaded complexes can efficiently be engulfed by immature DCs to induce DC maturation and cytokine secretion.After subcutaneous injection,highly sensitive NIR-II fluorescence signal from nanoparticles indicates that nanoparticle-labeled DCs can successfully migrate into lymph nodes in vivo,showing great promise in immunotherapy against cancer.展开更多
Ovarian cancer is a global problem,and is typically diagnosed in the middle or late stages,with a mysterious abdominal mass or atypical abdominal metastases due to the lack of specific initial diagnostic methods.Dual-...Ovarian cancer is a global problem,and is typically diagnosed in the middle or late stages,with a mysterious abdominal mass or atypical abdominal metastases due to the lack of specific initial diagnostic methods.Dual-modal near-infrared Ⅱ(NIR-Ⅱ,1,000–1,700 nm)fluorescence/photoacoustic imaging has great potential in early ovarian cancer diagnosis and image-guided surgery due to its high sensitivity and deep penetration.Herein,we report a novel organic NIR-Ⅱ dye(H10)with excellent aggregation-induced-emission(AIE)characteristics(I/I0>1.6)utilizing a selenadiazolo-[3,4-f]benzo[c][1,2,5]thiadiazole(ST)-based building block.Then,water-soluble and biocompatible H10@follicle-stimulating hormone(H10@FSH)dots with superior optical/photoacoustic properties and a tenfold increase in ovarian-specific targeting ability were synthesized.Finally,for the first time,in vivo dual-mode NIR-Ⅱ fluorescent/photoacoustic(PA)imaging and image-guided surgery of patient-derived tumor xenograft(PDTX)and micro-metastatic abdominal ovarian cancer lesions were investigated.This novel strategy will establish a new method for early detection of ovarian cancer and significantly improve the prognosis of ovarian cancer patients.展开更多
Near-infrared(NIR)absorbing materials hold great potential in biomedical applications,such as fluorescence imaging(FLI),photoacoustic imaging(PAI),photodynamic therapy(PDT),and photothermal therapy(PTT).Generally,thes...Near-infrared(NIR)absorbing materials hold great potential in biomedical applications,such as fluorescence imaging(FLI),photoacoustic imaging(PAI),photodynamic therapy(PDT),and photothermal therapy(PTT).Generally,these materials can be classified into two main categories based on their absorbing wavelengths:the first NIR(NIR-I)(~650–950 nm)absorbing materials and the second NIR(NIR-Ⅱ)(~1000–1700 nm)absorbing materials.Due to the reduced absorption and scattering of NIR-Ⅱlight in tissue compared to NIR-Ⅰlight,NIR-Ⅱabsorbing materials enable imaging and therapy with improved contrast and deepened penetration,which is in favor of practical applications.Various inorganic materials have been developed for NIR-Ⅱphototheranostics in recent years.However,the non-biodegradability and potential toxicity of these materials hinder their further clinical trans-lation.Biocompatible organic materials with potential biodegradability as well as tailored optical property are thus more desired.In this review,we sum-marize the recent advances of NIR-Ⅱabsorbing organic nanoagents(ONAs)based on small molecules(SMs)and conjugated polymers(CPs)for PAI and PTT and show our perspectives on future challenges and development of these materials.展开更多
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
基金Technology Program(KQTD20170810110913065,20200925174735005)National Natural Science Foundation of China(62005116,51720105015)Guangdong Provincial Key Laboratory of Advanced Biomaterials(2022B1212010003).
文摘Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information, without depth resolution. Here, we systematically apply a light-sheet illumination, a time-gated detection, and a deep-learning algorithm to yield high-contrast high-resolution volumetric images. To achieve a large Fo V(field of view) and minimize the scattering effect, we generate a light sheet as thin as 100.5 μm with a Rayleigh length of 8 mm to yield an axial resolution of 220 μm. To further suppress the background, we time-gate to only detect long lifetime luminescence achieving a high contrast of up to 0.45 Icontrast. To enhance the resolution, we develop an algorithm based on profile protrusions detection and a deep neural network and distinguish vasculature from a low-contrast area of 0.07 Icontrast to resolve the 100μm small vessels. The system can rapidly scan a volume of view of 75 × 55 × 20 mm3and collect 750 images within 6mins. By adding a scattering-based modality to acquire the 3D surface profile of the mice skin, we reveal the whole volumetric vasculature network with clear depth resolution within more than 1 mm from the skin. High-contrast large-scale 3D animal imaging helps us expand a new dimension in NIR-Ⅱ imaging.
基金financially supported by the National Natural Science Foundation of China(No.52273163)the Science Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20190807163003704)Open Research Fund of Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials(No.PML2201)。
文摘Second near-infrared(NIR-Ⅱ)light triggered in-situ tumor vaccination(ISTV)represents one of the most promising strategies in boosting the whole-body antitumor immunity.While most of previously developed nano-adjuvants for NIR-Ⅱ-triggered ISTV are“all-in-one”formulations,which may indiscriminately damage both the tumor cells and the immune cells,limiting the overall effect of immune response.To overcome this obstacle,we designed a“cocktail”nano-adjuvant by physically mixing hyaluronidases(HAase)-decorated gold nanostars(HA)for NIR-Ⅱlight triggered in situ production of tumor-associated antigens and CpG functionalized gold nanospheres(CA)for immune cells activation.Compared to“all-in-one”formulation,the“cocktail”nano-adjuvants displayed a significantly stronger immune response on NIR-Ⅱlight induced dendritic cells(DCs)mutation and T cells differentiation,greater effect on tumor-growth inhibition,and higher efficacy in inhibition of pulmonary metastases.What is more,increasing the molar ratio of HA to CA led to an enhanced anticancer immune responses.This study highlight the nano-adjuvant formulation effects on the treatment of tumors with multiple targets.
基金supported by the National Natural Science Foundation of China (22374065)the Science and Technology Innovation Program of Hunan Province “Huxiang Young Talents Plan”(2021RC3106)the Key Research and Development Program of Hunan Province,China (2022SK2053)。
文摘Colorectal cancer(CRC) is one of the major causes of cancer-related mortality worldwide. Most near-infrared(NIR) agents used in clinical CRC treatment are at NIR-I(700–900 nm) window, which has limitations on deep tissue, and fluorescent probes in the second NIR(1,000–1,700 nm) allow high-resolution bioimaging with deep tissue penetration. However, existing NIR-II fluorophores used in clinical are still rare. Herein, based on shielding-donor-acceptor-donor-shielding(S-D-A-D-S) scaffold, we developed an organic small-molecule fluorophore IR-BTGP with NIR-II emission for imaging-guided photothermal therapy(PTT) in CRC mice model. Amphiphilic IR-BTGP can be self-assembled into spherical nano-micelles, which presents reliable water solubility and photothermal conversion efficiency(30.2%). In vitro experiments indicate that cancer cells treated with IRBTGP were significantly killed upon 808 nm light irradiation. Furthermore, in vivo NIR-II fluorescence imaging confirms that IR-BTGP accumulates in the tumor region. Remarkably, a significant tumor inhibition rate(78.5%) was observed in tumorbearing mice when treated with IR-BTGP plus 808 nm irradiation. Therefore, this work shows that IR-BTGP holds great promise as an NIR-II fluorescence imaging-guided PTT platform for CRC in the future.
基金This work was supported by the National Natural Science Foundation of China(Nos.21635002 and 21874024)the joint research projects of Health and Education Commission of Fujian Province(No.2019-WJ-20).
文摘Multimodal imaging in the second near-infrared window(NIR-II)guided cancer therapy is a highly precise and efficient cancer theranostic strategy.However,it is still a challenge to develop activated NIR-II optical imaging and therapy agents.In this study,we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod(AuNNR)and fluorescent down-conversion nanoparticles(DCNP)(AuNNR-DCNP Ve),showing remarkable and activated NIR-II fluorescence(FL)/NIR-II photoacoustic(PA)imaging performances.The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy.Interestingly,the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal.Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.
基金supported by the National Key Research and Development Program of China(2017YFC1309100 and 2017YFA0205200)the National Natural Science Foundation of China(21804104 and 91959124)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU,2020-QZ-01)the Fundamental Research Fund for the Central University(3102019jcc005)the Youth Innovation Team of Shaanxi Universities,Natural Science Foundation of Shaanxi Province(2020PT-020)。
文摘Near-infrared Ⅱ(NIR-Ⅱ)fluorescent nanoprobes hold great potential for biomedical applications.Elucidating the relationship between surface properties of NIR-Ⅱ nanoprobes and their biological behaviors is particularly important for future probe design and their performance optimization.Despite the rapid development of NIR-Ⅱ nanoprobes,the distinct role of surface chirality on their biological fates has rarely been exploited.Herein,chiral NIR-Ⅱ fluorescent Ag_(2)S quantum dots(QDs)are synthesized to investigate the relationship between their chirality and biological functions at both in vitro and in vivo levels.D-/L-Ag_(2)S QDs exhibit significant differences on their interactions with serum proteins,which further affect the cellular uptake.As a result,D-Ag_(2)S QDs can be internalized with higher efficiency(over 2-fold)than that of L-Ag_(2)S QDs.Moreover,in vivo studies reveal that the chirality determines the primary localization of these chiral QDs,where a more efficient renal elimination of D-Ag_(2)S QDs was observed than that of L-Ag_(2)S QDs.Importantly,D-Ag_(2)S QDs show preferential accumulation in tumor region than that of L-Ag_(2)S QDs in orthotopic kidney tumor model,which points out a new avenue of enhancing targeting capabilities of nanoprobes by engineering their surface chirality.
文摘Fluorescent NIR-Ⅱ imaging has a wide range of benefits not offered by other imaging modalities for biomedical applications, derived from its combination of high spatial and temporal resolution due to reduced photon absorption, scattering and tissue auto-fluorescence. Compared to the well-studied NIR-Ⅰ small-molecule fluorophores, the structures of NIR-Ⅱ fluorophores are scarce. To date, the main fluorophore units are composed of conjugated π system with a benzobisthiadiazole(BBTD) core and donor-acceptor-donor(D-A-D) structure. Herein, researchers Yang et al. and Zhang et al. have reported new NIR-Ⅱ probes ECX and FD-1080 respectively without a BBTD core which are highlighted.
基金financial support from the Training Program of the Major Research Plan of the National Natural Science Foundation of China (No. 91959123)National Natural Science Foundation of China (No. 22077092)+2 种基金Key Research and Development Program of Social Development of Jiangsu Province (No. BE2018655)the Open Project Program of the State Key Laboratory of Radiation Medicine and Protection (Nos. GZK1202132, GZK1202140 and GZK1202017)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness.Developing advanced phototheranostic agents with long emission wavelength,excellent biocompatibility,great tumor-targeting capability,and efficient therapeutic effect is highly desirable.However,the mutual constraint between imaging and therapeutic functions usually hinders their wide applications in biomedical field.To balance this contradiction,we herein rationally designed and synthesized three novel tumor-targeted NIR-Ⅱ probes(QR-2PEG_(321),QR-2PEG_(1000),and QR-2PEG_(5000)) by conjugating three different chain lengths of PEG onto an integrin α_(v)β_(3)-targeted NIR-Ⅱ heptamethine cyanine fluorophore,respectively.In virtue of the essential amphiphilic characteristics of PEG polymers,these probes display various degree of aggregation in aqueous buffer accompanying with differential NIR-Ⅱ imaging and photothermal(PTT) therapeutic performance.Both in vitro and in vivo results have demonstrated that probe QR-2PEG_(5000) has the best NIR-Ⅱ imaging performance with prominent renal clearance,whereas QR-2PEG_(321)possesses excellent photoacoustic signal as well as PTT effect,which undoubtedly provides a promising toolbox for tumor diagnosis and therapy.We thus envision that these synthesized probes have great potential to be explored as a toolkit for precise diagnosis and treatment of malignant tumors.
基金supported by the National Key Research&Development Program of China(2020YFA0709900)the National Natural Science Foundation of China(22027805,22274024)+2 种基金the Major Project of Science and Technology of Fujian Province(2020HZ06006)the Young Elite Scientist Sponsorship Program by CAST(YESS20200110)China Postdoctoral Science Foundation(2022M720737,2021T140117)
文摘Gold nanoclusters(AuNCs)with near-infraredⅡ(NIR-Ⅱ)photoluminescence(PL)have emerged as novel bioimaging probes for in vivo disease diagnosis.So far,it still lacks a systematic review focusing on the synthesis,PL tuning,and in vivo imaging of NIR-Ⅱluminescent AuNCs.In this review,we briefly introduce the synthesis of NIR-Ⅱluminescent AuNCs using various surface ligands.We discuss the origins and properties of NIR-ⅡPL in AuNCs,and summarize the strategies for improving and/or tuning NIR-ⅡPL emissions.We also provide an overview of the recent progress in the application of AuNCs in tumor-targeted imaging,molecular imaging,and other areas(such as the sensitive imaging of bones,vessels,lymph nodes,etc.).Finally,we present the prospects and challenges in the field of NIR-Ⅱluminescent AuNCs and related imaging applications,expecting to offer comprehensive understanding of this field,and thereby deepening and broadening the biological application of AuNCs.
基金supported by Foundation Young Elite Scientists Sponsorship Program by Tianjin(0701320001,China)Major Special Projects of Tianjin(No.0402080005,China)+2 种基金the National Natural Science Foundation of China(No.81771880 and No.82171989,China)National Natural Science Foundation of China(No.82171989,China)Applied Basic Research of Tianjin(No.21JCYBJC00660,China)。
文摘Ferroptosis(FPT),a novel form of programmed cell death,is characterized by overwhelming iron/reactive oxygen species(ROS)-dependent accumulation of lipid peroxidation(LPO).However,the insufficiency of endogenous iron and ROS level limited the FPT therapeutic efficacy to a large extent.To overcome this obstacle,the bromodomain-containing protein 4(BRD_(4))-inhibitor(+)-JQ1(JQ1)and iron-supplement ferric ammonium citrate(FAC)-loaded gold nanorods(GNRs)are encapsulated into the zeolitic imidazolate framework-8(ZIF-8)to form matchbox-like GNRs@JF/ZIF-8 for the amplified FPT therapy.The existence of matchbox(ZIF-8)is stable in physiologically neutral conditions but degradable in acidic environment,which could prevent the loaded agents from prematurely reacting.Moreover,GNRs as the drug-carriers induce the photothermal therapy(PTT)effect under the irradiation of near-infraredⅡ(NIR-Ⅱ)light owing to the absorption by localized surface plasmon resonance(LSPR),while the hyperthermia also boosts the JQ1 and FAC releasing in the tumor microenvironment(TME).On one hand,the FAC-induced Fenton/Fenton-like reactions in TME can simultaneously generate iron(Fe^(3+)/Fe^(2+))and ROS to initiate the FPT treatment by LPO elevation.On the other hand,JQ1 as a small molecule inhibitor of BRD_(4)protein can amplify FPT through downregulating the expression of glutathione peroxidase 4(GPX4),thus inhibiting the ROS elimination and leading to the LPO accumulation.Both in vitro and in vivo studies reveal that this p H-sensitive nano-matchbox achieves obvious suppression of tumor growth with good biosafety and biocompatibility.As a result,our study points out a PTT combined iron-based/BRD_(4)-downregulated strategy for amplified ferrotherapy which also opens the door of future exploitation of ferrotherapy systems.
基金Y.L.acknowledges financial supports from the National Natural Science Foundation of China(No.21772084)Fundamental Research Layout of Shenzhen(No.JCY20180504165657443)+2 种基金H.S.thanks the National Natural Science Foundation of China(Nos.11727810,61720106009 and 21603074)the Science and Technology Commission of Shanghai Municipality(No.19JC1412200)for funding support and the ECNU Multifunctional Platform for Innovation(001)and HPC Research Computing Team for providing computational and storage resourcesX.Z thanks the funding supports from the National Natural Science Foundation of China(Nos.91859101,81971744,and U1932107).
文摘It is challenging to develop molecular fluorophores in the second near-infrared(NIR-Ⅱ)window with long wavelength emission and high brightness,which can improve the performance of biological imaging.Herein,we report a molecular engineering approach to afford NIR-Ⅱ fluorophores with these merits based on fused-ring acceptor(FRA)molecules.Dioctyl 3,4-propylenedioxy thiophene(PDOT-C8)is utilized as the bridging donor to replace 3-ethylhexyloxy thiophene(3-EHOT),leading to more than 20 times enhancement of brightness.The nanofluorophores(NFs)based on the optimized CPTIC-4F molecule exhibit an emission peak of 1,110 nm with a fluorescence quantum yield(QY)of 0.39%(QY of IR-26 is 0.050%in dichloroethane as reference)and peak absorption coefficient of 14.5 x 10^4 M^-1·cm^-1 in aqueous solutions,which are significantly higher than those of 3-EHOT based COTIC-4F NFs.It is found that PDOT-C8 can weaken intermolecular aggregation,enhance protection of molecular backbone from water,and decrease backbone distortion,beneficial for the high brightness.Compared with indocyanine green with same injection dose,CPTIC-4F NFs show 10 times higher signal-to-background ratio for whole body vessels imaging at 1,300 nm long pass filters.
基金financially supported in part by the National Natural Science Foundation of China(Nos.62075103,81973488)the Natural Science Foundation of Jiangsu Province(No.BK20211271)+4 种基金the Foundation of Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application(No.2021KFKT07)the Training Program of Innovation and Entrepreneurship for College Students in Jiangsu(No.202110312037Z)the Jiangsu Provincial Medical Youth Talent(No.QNRC2016075)the Nanjing Medical Science and Technique Development Foundation(No.ZKX19022)the Jiangsu Provincial High level Health Talent“six one project”(No.LGY2019005)。
文摘Phototheranostic with highly integrated functions is an attractive platform for cancer management. It remains challenging to develop a facile phototheranostic platform with complementary bimodal imaging and combinational therapy capacity. Herein, the small-molecule cyanine IR780 loaded liposomes have been harnessed as a nanoplatform to simultaneously realize photoacoustic(PA)/the second near-infrared window(NIR-Ⅱ) fluorescence imaging and image-guided surgery/adjuvant photothermal therapy(PTT).This nanoplatform exhibits attractive properties like uniform controllable size, stable dispersibility, NIR-Ⅱ fluorescence emission, photothermal conversion, and biocompatibility. Benefiting from the complementary PA/NIR-Ⅱ fluorescence bimodal imaging, this nanoplatform was successfully applied in precise vasculature delineation and tumor diagnosis. Interestingly, the tumor was clearly detected by NIR-Ⅱ fluorescence imaging with the highest tumor-to-normal-tissue ratio up to 12.69, while signal interference from the liver was significantly reduced, due to the difference in the elimination rate of the nanoplatform in the liver and tumor. Under the precise guidance of the image, the tumor was accurately resected, and the simulated residual lesion after surgery was completely ablated by adjuvant PTT. This combined therapy showed improved antitumor efcacy over the individual surgery or PTT. This work develops a facile phototheranostic nanoplatform with great significance in accurately diagnosing and effectively treating tumors using simple NIR light irradiation.
基金This research was supported by the National Natural Science Foundation of China(Nos.22027805 and 21874024)the National Key R&D Program of China(No.2020YFA0210800)+1 种基金the joint research projects of Health and Education Commission of Fujian Province(No.2019-WJ-20)the Natural Science Foundation of Fujian Province(No.2020J02012).
文摘Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics,and developing the oxygen production nanoplatforms received the widespread attention.However,it is remaining a challenge to structure a nanoplatform with hypoxia alleviation effect and imaging-guided cancer radiotherapy.Herein,we present a novel theranostics nanoplatform(Au NPs/UCNPs/WO_(3)@C)comprising of tungsten trioxide(WO3)that loaded gold nanoparticles(Au NPs)and up-conversion nanoparticles(UCNPs)for improved photoacoustic(PA)imaging performance in the second near infrared window(NIR-Ⅱ,900-1,700 nm).Au NPs/UCNPs/WO_(3)@C exhibited superior oxygen-generation effect and doxorubicin loading capacity,thus serving as an efficient radiosensitizer for radio-chemo anti-cancer therapy.Importantly,the accumulated Au NPs/UCNPs/WO_(3)@C in the tumor region led to the increased NIR-Ⅱ PA imaging signal and the blood oxygen saturation signal,which could enhance radiation sensitivity and accurately guiding cancer radiotherapy to reduce side effects on normal tissues.This study with proof-of-concept confirmed the multifaceted characteristics and encouraging potential of biomimetic Au NPs/UCNPs/WO_(3)@C for NIR-Ⅱ PA imaging-guided tumor therapeutics.
基金the National Natural Science Foundation of China(21574064,21674048,21671109,21604042)Primary Research&Development Plan of Jiangsu Province(BE2016770)+1 种基金Synergetic Innovation Center for Organic Electronics and Information Displaysthe Priority Academic Program Development of Jiangsu Higher Education Institutions(YX030003)。
文摘Dendritic cell(DC)vaccine is an effective strategy for cancer immunotherapy by carrying antigen into DCs and migrating these DCs to drain lymph nodes after inoculation.In this article,second near-infrared window(NIR-II)fluorescent nanoparticles have been used to uptake antigen and activate DCs.Ovalbumin(OVA),an antigen for immunization,can be loaded on the surface of these NIR-II fluorescent nanoparticles via electrostatic interaction by virtue of their functionalized poly(L-lysine)(PLL),which exhibits biocompatibility and strong selective interaction with OVA.In addition,these antigen-loaded complexes can efficiently be engulfed by immature DCs to induce DC maturation and cytokine secretion.After subcutaneous injection,highly sensitive NIR-II fluorescence signal from nanoparticles indicates that nanoparticle-labeled DCs can successfully migrate into lymph nodes in vivo,showing great promise in immunotherapy against cancer.
基金supported by the National Key Research and development Program of China(Nos.2020YFA0908800 and 2015DFA30440)the National Natural Science Foundation of China(Nos.82111530209,81773674,81573383,91959103,and 61971447)+4 种基金Hubei Province Scientific and Technical Innovation Key Project(No.2020BAB058)Beijing Natural Science Foundation(No.JQ18023)Shenzhen Science and Technology Research Grant(No.JCYJ20190808152019182)the Local Development Funds of Science and Technology Department of Tibet(Nos.XZ202102YD0033C and XZ202202YD0021C)the Fundamental Research Funds for the Central Universities.
文摘Ovarian cancer is a global problem,and is typically diagnosed in the middle or late stages,with a mysterious abdominal mass or atypical abdominal metastases due to the lack of specific initial diagnostic methods.Dual-modal near-infrared Ⅱ(NIR-Ⅱ,1,000–1,700 nm)fluorescence/photoacoustic imaging has great potential in early ovarian cancer diagnosis and image-guided surgery due to its high sensitivity and deep penetration.Herein,we report a novel organic NIR-Ⅱ dye(H10)with excellent aggregation-induced-emission(AIE)characteristics(I/I0>1.6)utilizing a selenadiazolo-[3,4-f]benzo[c][1,2,5]thiadiazole(ST)-based building block.Then,water-soluble and biocompatible H10@follicle-stimulating hormone(H10@FSH)dots with superior optical/photoacoustic properties and a tenfold increase in ovarian-specific targeting ability were synthesized.Finally,for the first time,in vivo dual-mode NIR-Ⅱ fluorescent/photoacoustic(PA)imaging and image-guided surgery of patient-derived tumor xenograft(PDTX)and micro-metastatic abdominal ovarian cancer lesions were investigated.This novel strategy will establish a new method for early detection of ovarian cancer and significantly improve the prognosis of ovarian cancer patients.
基金The Postdoctoral Fund of Westlake University,Grant/Award Number:103110126582102。
文摘Near-infrared(NIR)absorbing materials hold great potential in biomedical applications,such as fluorescence imaging(FLI),photoacoustic imaging(PAI),photodynamic therapy(PDT),and photothermal therapy(PTT).Generally,these materials can be classified into two main categories based on their absorbing wavelengths:the first NIR(NIR-I)(~650–950 nm)absorbing materials and the second NIR(NIR-Ⅱ)(~1000–1700 nm)absorbing materials.Due to the reduced absorption and scattering of NIR-Ⅱlight in tissue compared to NIR-Ⅰlight,NIR-Ⅱabsorbing materials enable imaging and therapy with improved contrast and deepened penetration,which is in favor of practical applications.Various inorganic materials have been developed for NIR-Ⅱphototheranostics in recent years.However,the non-biodegradability and potential toxicity of these materials hinder their further clinical trans-lation.Biocompatible organic materials with potential biodegradability as well as tailored optical property are thus more desired.In this review,we sum-marize the recent advances of NIR-Ⅱabsorbing organic nanoagents(ONAs)based on small molecules(SMs)and conjugated polymers(CPs)for PAI and PTT and show our perspectives on future challenges and development of these materials.