The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear rea...The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear reactors,Zr alloy fuel cladding is subjected to extreme harsh environments,such as high temperature,high pressure and high flow rate for a long period of time.The wear and corrosion resistance of Zr alloys is important for the safe operation of nuclear reactors.Surface modification can effectively improve the corrosion and wear resistance of fuel cladding.Compared with coating technology,nitriding technology does not have problems for bonding between the coating and the substrate.Current research on surface nitriding of Zr alloys mainly focuses on plasma nitriding and ion implantation techniques.Research on laser nitriding of Zr alloy surfaces and their fretting wear characteristics is scarce.In this study,the surface of Zr alloy was treated with laser nitriding at different laser energies.The microstructure of Zr alloy treated with different laser energies and its fretting wear performance were studied.The results showed that after nitriding with different laser energies,the surface of the Zr alloy showed a typical molten state after melting,vaporizing and cooling under the thermal effect of the laser,and this state was more obvious with the increase of the laser energy.At the same time,doping of N atoms and formation of the ZrN phase led to different cooling rates in the molten zone that produced large tensile stresses after cooling.This led to cracks on the surface of Zr alloys after laser nitriding at different energies,and the crack density increased with increasing laser energy.This also led to an increase in the surface roughness of the Zr alloy with increasing laser energy after laser nitriding treatment.Due to the presence of water in the industrial nitrogen,nitrides were generated on the surface of the sample along with some oxides.When the laser energy was 100 mJ,there was no ZrN generation,and N existed mainly as a diffusion layer within the Zr alloy substrate.ZrN generated when the laser energy reached 200 mJ and above,which increased with the increase of laser energy.Due to the generation of ZrN phase and the presence of some oxides,the surface Vickers hardness of Zr alloys after laser nitriding treatment at different energies increased by 37.5%compared to Zr alloys.After laser nitriding treatment,the wear mechanism of Zr alloys changed.For the untreated Zr alloys,the wear mechanism was dominated by delamination and spalling wear,accompanied by oxidative and abrasive wear.The phenomenon of delamination and peeling decreased with the increase of laser energy.Wear mechanisms changed to predominantly abrasive wear with oxidative wear and delamination spalling.The wear volume of sample nitriding with laser energy 400 mJ was reduced by 46.5%compared with that of untreated Zr alloy.展开更多
Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a s...Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a small amount of O_(2) is introduced into the preparation process. The study indicates that trace O_(2) addition into the reaction chamber gives rise to significant changes on the color and micro-morphology of the foil, featuring dense and long nano-wires. The as-synthesized nanostructures are characterized by various methods and identified as TiN, Ti_(2) N, and TiO_(2) respectively. Moreover, the experiment results show that oxide nanowire has a high degree of crystallinity and the nitrides present specific orientation relationships with the titanium matrix.展开更多
An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃...An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.展开更多
Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum ...Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum solution.Resultsshow that plasma nitriding is a promising process to produce thick,hard,and more wear resistant layers on the surface of CoCrMoalloy.All nitrided samples showed an important increase in the surface hardness due to the formation of harder CrN andCrN phases with compact nano-crystalline structures.The typical hardness values of HVincreased almost two times thanuntreated one.Under bovine serum lubrication,at low nitriding temperature the Coefficient of Friction (COF) of nitrided samplewas lower than that of untreated sample,but at high nitriding temperature the COF was almost the same as the untreated one.Compared with the untreated sample,the nitrided samples showed lower wear rates and higher wear resistance under differentnitriding temperatures.The adhesive wear is the main mechanism for untreated CoCrMo alloy and the wear mechanisms ofnitrided ones are the fatigue wear and slight adhesive wear.It is concluded that the improvement of wear resistance is ascribed tothe hard nitride formation of CrN and CrN phases at the nitrided surfaces.展开更多
The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the di...The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the discs maintained the original coarse-grained condition. The gaseous nitriding was subsequently carried out at three different temperatures: 460, 500 and 560℃. The compound layer growth and diffusion behavior were then studied. It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate. As a result, nitriding time could be reduced to the half. It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.展开更多
Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical micros...Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical microscope,normal SEM and high resolution SEM, as well as TEM. It was found that the extent of the influence on plasma nitriding varies with different contents of rare earth. The effect of plasma nitriding is benefit from adding of Ce or Nd. The formation of hard and brittle phase Fe_(2-3)N can be prevented and the butterfly-like structure can be improved by adding Ce or Nd. However, pure La may prevent the diffusion of nitrogen and the formation of iron nitride, and reduce the depth of diffusion layer.展开更多
This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless ...This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.展开更多
A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray d...A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray diffraction(XRD),respectively.The tribological performance was measured to investigate its dependence on the nitriding-sulfurizing composite treatment process.The results indicated that the composite layer was mainly comprised of Ti2N,TiN,and TiS2.It was found that the composite layer exhibited superior tribological properties under dry friction and absolute sliding conditions due to the formation of sulfides with self-lubricating function.展开更多
β-Sialon was produced by carbon thermal nitriding reaction in N_2 gas atmosphere when the mixtures of bauxite and anthracite were put into vertical furnace. According to the mass loss of raw materials and the result ...β-Sialon was produced by carbon thermal nitriding reaction in N_2 gas atmosphere when the mixtures of bauxite and anthracite were put into vertical furnace. According to the mass loss of raw materials and the result of X-ray diffration (XRD) of products, the influences of the process parameters on the compositions and relative contents of products, such as the fixed carbon content, the flow of N2, the soaking time and the temperature, were researched.展开更多
CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density an...CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density and scanning speed were chosen as 7.8×10^5W·cm^-2 and 100mm·min^-1. By some laser irradiation, Fe4N and Fe3N were formed in the nitrided zone. The nitrided samples were annealed at the temperatures ranged from 100 to 90℃. The core loss of some interested samples was tested. The results show that the core loss of the nitrided samples with different thickness of 0.23 and 0.30mm decreased by 14.9% and 9.4% respectively, and the aging property were improved up to 800℃. The mechanism of laser nitriding to improve the properties of grain oriented silicon steel is discussed.展开更多
Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitrid...Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitriding layer consists of compound layer (γ′-Fe4N) and diffusion layer (α-Fe). Lanthanum content profiles in nanocrystallized surface layer were measured using glow discharge spectometry(GDS). The results show that lanthanum can diffuse into the surface layer of the steel to a large depth. Based on the experimental results mentioned above, the diffusion coefficients and activation energy of lanthanum in γ′ phase are calculated to be 1.03×10 -15 cm2/s (350℃), 1.75×10 -15 cm2/s (410℃) and 31.313kJ/mol, respectively.展开更多
An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nit...An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nitriding at 400℃, the TC4 alloy is nitrided on surface and dispersion strengthened in bulk at the same time. The white nitriding layer is formed after some time of nitriding. The nitriding speed increases with the deformation degree. The construction was investigated by XRD and the nitride is Ti3N(2-X). The wear test was carried out and results exhibit that the nitrided samples have better wear resistance.展开更多
The plasma electrolytic carbonitriding(PEC/N)process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte.Mechanical properties of the carbonitriding layers on cast iron are i...The plasma electrolytic carbonitriding(PEC/N)process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte.Mechanical properties of the carbonitriding layers on cast iron are investigated.After the PEC/N treatment,the microhardness and wear resistance of cast iron are improved significantly compared to the untreated substrate.When the substrate is processed at 350V for 60 s,the coating presents the highest microhardness and it is about 554.14HK0.02,and the coating with the highest hardness has the best wear resistance.展开更多
Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results show...Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression. The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.展开更多
A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out f...A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.展开更多
Effect of ion nitriding modification on surface hardness, corrosion resistance and magnetostriction of (Tb0.3Dy0.7)Fe1.95 alloy was investigated. Results demonstrated that a 100-200 nm thick nitrided layer was forme...Effect of ion nitriding modification on surface hardness, corrosion resistance and magnetostriction of (Tb0.3Dy0.7)Fe1.95 alloy was investigated. Results demonstrated that a 100-200 nm thick nitrided layer was formed on the sample surface by ion nitriding treatment, which improved obviously surface hardness, wear, and corrosion resistance properties of (Tb0.3Dy0.7)Fe1.95 alloys. The surface hardness was increased from HV587 to HV622 after ion nitriding at 650 K for 6 h. Furthermore, ion nitriding treatment had almost no influence on mag- netostrictive performance as the nitrided layer was quite thin and the treatment temperature was not too high. The results might provide us a new approach for surface modification of (Tb0.3Dy0.7)Fe1.95 alloy.展开更多
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele...The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.展开更多
Prior studies have noted that gas nitriding has a considerable effect for wear resistance. The aim of this paper is to study the influence of gas nitriding time (12, 24, 36 and 48 h) in the wear behaviour of 42CrMo4 s...Prior studies have noted that gas nitriding has a considerable effect for wear resistance. The aim of this paper is to study the influence of gas nitriding time (12, 24, 36 and 48 h) in the wear behaviour of 42CrMo4 steel. It has been assessed by micro hardness, pin-on-disc tribosystem, and SEM through the nitrided layer for each nitriding time. The study relates to the performance of the compound layer and the diffusion layer with respect to adhesive wear. The results were analyzed in terms of the weight lost during wear, for nitrided steel with and without the compound layer, and for untreated steel. It has been observed that wear rate varies as a function of the tests conditions due to the presence of different wear mechanisms. Thus, for short tests conditions wear rate depends on two mechanisms: plastic deformation and adhesive wear, whereas for large tests conditions the mechanisms controlling wear rate are abrasive and oxidative wear. Furthermore, this study contains an analysis of the wear mechanisms of a nitrided part, founded on scanning electron microscopy (SEM) observations of the wear traces at various stages of the evolution of wear. The SEM examination of worn surfaces revealed signatures for the adhesion, abrasion, delamination and tribochemical (oxidative) modes of wear. This is an important issue for future research.展开更多
Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples w...Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.展开更多
Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed usi...Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.展开更多
文摘The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear reactors,Zr alloy fuel cladding is subjected to extreme harsh environments,such as high temperature,high pressure and high flow rate for a long period of time.The wear and corrosion resistance of Zr alloys is important for the safe operation of nuclear reactors.Surface modification can effectively improve the corrosion and wear resistance of fuel cladding.Compared with coating technology,nitriding technology does not have problems for bonding between the coating and the substrate.Current research on surface nitriding of Zr alloys mainly focuses on plasma nitriding and ion implantation techniques.Research on laser nitriding of Zr alloy surfaces and their fretting wear characteristics is scarce.In this study,the surface of Zr alloy was treated with laser nitriding at different laser energies.The microstructure of Zr alloy treated with different laser energies and its fretting wear performance were studied.The results showed that after nitriding with different laser energies,the surface of the Zr alloy showed a typical molten state after melting,vaporizing and cooling under the thermal effect of the laser,and this state was more obvious with the increase of the laser energy.At the same time,doping of N atoms and formation of the ZrN phase led to different cooling rates in the molten zone that produced large tensile stresses after cooling.This led to cracks on the surface of Zr alloys after laser nitriding at different energies,and the crack density increased with increasing laser energy.This also led to an increase in the surface roughness of the Zr alloy with increasing laser energy after laser nitriding treatment.Due to the presence of water in the industrial nitrogen,nitrides were generated on the surface of the sample along with some oxides.When the laser energy was 100 mJ,there was no ZrN generation,and N existed mainly as a diffusion layer within the Zr alloy substrate.ZrN generated when the laser energy reached 200 mJ and above,which increased with the increase of laser energy.Due to the generation of ZrN phase and the presence of some oxides,the surface Vickers hardness of Zr alloys after laser nitriding treatment at different energies increased by 37.5%compared to Zr alloys.After laser nitriding treatment,the wear mechanism of Zr alloys changed.For the untreated Zr alloys,the wear mechanism was dominated by delamination and spalling wear,accompanied by oxidative and abrasive wear.The phenomenon of delamination and peeling decreased with the increase of laser energy.Wear mechanisms changed to predominantly abrasive wear with oxidative wear and delamination spalling.The wear volume of sample nitriding with laser energy 400 mJ was reduced by 46.5%compared with that of untreated Zr alloy.
基金Project supported by the Innovation Funding of Beijing Institute of Aeronautical Materials。
文摘Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a small amount of O_(2) is introduced into the preparation process. The study indicates that trace O_(2) addition into the reaction chamber gives rise to significant changes on the color and micro-morphology of the foil, featuring dense and long nano-wires. The as-synthesized nanostructures are characterized by various methods and identified as TiN, Ti_(2) N, and TiO_(2) respectively. Moreover, the experiment results show that oxide nanowire has a high degree of crystallinity and the nitrides present specific orientation relationships with the titanium matrix.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.
基金the supports by Tribology Science Fund State Key Laboratory of Tribology (SKLT) at Tsinghua University(SKLTKF08A01)Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China (No.51005234)
文摘Medical forged CoCrMo alloy was treated by plasma nitriding process.The microstructures were characterized by 3Dprofiler,SEM and XRD.The tribological properties were investigated under lubrication of 25% bovine serum solution.Resultsshow that plasma nitriding is a promising process to produce thick,hard,and more wear resistant layers on the surface of CoCrMoalloy.All nitrided samples showed an important increase in the surface hardness due to the formation of harder CrN andCrN phases with compact nano-crystalline structures.The typical hardness values of HVincreased almost two times thanuntreated one.Under bovine serum lubrication,at low nitriding temperature the Coefficient of Friction (COF) of nitrided samplewas lower than that of untreated sample,but at high nitriding temperature the COF was almost the same as the untreated one.Compared with the untreated sample,the nitrided samples showed lower wear rates and higher wear resistance under differentnitriding temperatures.The adhesive wear is the main mechanism for untreated CoCrMo alloy and the wear mechanisms ofnitrided ones are the fatigue wear and slight adhesive wear.It is concluded that the improvement of wear resistance is ascribed tothe hard nitride formation of CrN and CrN phases at the nitrided surfaces.
文摘The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the discs maintained the original coarse-grained condition. The gaseous nitriding was subsequently carried out at three different temperatures: 460, 500 and 560℃. The compound layer growth and diffusion behavior were then studied. It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate. As a result, nitriding time could be reduced to the half. It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.
文摘Medium-carbon alloy steel was plasma nitrided with rare earths La, Ce and Nd into the nitriding chamber respectively. The nitriding layer microstructures with and without rare earths were compared using optical microscope,normal SEM and high resolution SEM, as well as TEM. It was found that the extent of the influence on plasma nitriding varies with different contents of rare earth. The effect of plasma nitriding is benefit from adding of Ce or Nd. The formation of hard and brittle phase Fe_(2-3)N can be prevented and the butterfly-like structure can be improved by adding Ce or Nd. However, pure La may prevent the diffusion of nitrogen and the formation of iron nitride, and reduce the depth of diffusion layer.
基金the Scientific and Technological Research Council of Turkey(TUBITAK)for the support of this study(Grant No:215M134)。
文摘This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.
文摘A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray diffraction(XRD),respectively.The tribological performance was measured to investigate its dependence on the nitriding-sulfurizing composite treatment process.The results indicated that the composite layer was mainly comprised of Ti2N,TiN,and TiS2.It was found that the composite layer exhibited superior tribological properties under dry friction and absolute sliding conditions due to the formation of sulfides with self-lubricating function.
文摘β-Sialon was produced by carbon thermal nitriding reaction in N_2 gas atmosphere when the mixtures of bauxite and anthracite were put into vertical furnace. According to the mass loss of raw materials and the result of X-ray diffration (XRD) of products, the influences of the process parameters on the compositions and relative contents of products, such as the fixed carbon content, the flow of N2, the soaking time and the temperature, were researched.
基金supported by the National Natural Science Foundation of China(No.50174020).
文摘CW-CO2 laser nitriding technique was applied to improve the properties (such as aging property and the core loss) of grain oriented silicon steel. The samples were nitrided with regular space. Laser power density and scanning speed were chosen as 7.8×10^5W·cm^-2 and 100mm·min^-1. By some laser irradiation, Fe4N and Fe3N were formed in the nitrided zone. The nitrided samples were annealed at the temperatures ranged from 100 to 90℃. The core loss of some interested samples was tested. The results show that the core loss of the nitrided samples with different thickness of 0.23 and 0.30mm decreased by 14.9% and 9.4% respectively, and the aging property were improved up to 800℃. The mechanism of laser nitriding to improve the properties of grain oriented silicon steel is discussed.
文摘Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitriding layer consists of compound layer (γ′-Fe4N) and diffusion layer (α-Fe). Lanthanum content profiles in nanocrystallized surface layer were measured using glow discharge spectometry(GDS). The results show that lanthanum can diffuse into the surface layer of the steel to a large depth. Based on the experimental results mentioned above, the diffusion coefficients and activation energy of lanthanum in γ′ phase are calculated to be 1.03×10 -15 cm2/s (350℃), 1.75×10 -15 cm2/s (410℃) and 31.313kJ/mol, respectively.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nitriding at 400℃, the TC4 alloy is nitrided on surface and dispersion strengthened in bulk at the same time. The white nitriding layer is formed after some time of nitriding. The nitriding speed increases with the deformation degree. The construction was investigated by XRD and the nitride is Ti3N(2-X). The wear test was carried out and results exhibit that the nitrided samples have better wear resistance.
基金by the National Natural Science Foundation of China under Grant Nos 10735090 and 11005151(Young Scientists Fund).
文摘The plasma electrolytic carbonitriding(PEC/N)process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte.Mechanical properties of the carbonitriding layers on cast iron are investigated.After the PEC/N treatment,the microhardness and wear resistance of cast iron are improved significantly compared to the untreated substrate.When the substrate is processed at 350V for 60 s,the coating presents the highest microhardness and it is about 554.14HK0.02,and the coating with the highest hardness has the best wear resistance.
文摘Nitriding is employed for the hard Fe electrodeposition to produce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression. The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.
基金supported by National Natural Science Foundation of China(Nos.50171054 and 50671085)National High Technical Research and Development Programme of China(No.2007AA03Z521).
文摘A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.
基金supported by National High-Tech R&D Program (2006AA03Z106)Beijing Natural Science Foundation (2062012)National Natural Science Foundation (50801006)
文摘Effect of ion nitriding modification on surface hardness, corrosion resistance and magnetostriction of (Tb0.3Dy0.7)Fe1.95 alloy was investigated. Results demonstrated that a 100-200 nm thick nitrided layer was formed on the sample surface by ion nitriding treatment, which improved obviously surface hardness, wear, and corrosion resistance properties of (Tb0.3Dy0.7)Fe1.95 alloys. The surface hardness was increased from HV587 to HV622 after ion nitriding at 650 K for 6 h. Furthermore, ion nitriding treatment had almost no influence on mag- netostrictive performance as the nitrided layer was quite thin and the treatment temperature was not too high. The results might provide us a new approach for surface modification of (Tb0.3Dy0.7)Fe1.95 alloy.
基金Funded by the National Natural Science Foundation of China(No.51171125)the National High-Tech Research and Development Program of China(863 Program)(No.2007AAO3Z521)+3 种基金the Natural Science Foundation of of Shanxi Province(No.2012011021-4,2012021021-8)the Shanxi Province Foundation for Returned Overseas Scholars(No 2011-038)the Shanxi Province Programs for Science and Technology Development(20110321051)the Taiyuan University of Technology Graduate Innovation Fund
文摘The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.
文摘Prior studies have noted that gas nitriding has a considerable effect for wear resistance. The aim of this paper is to study the influence of gas nitriding time (12, 24, 36 and 48 h) in the wear behaviour of 42CrMo4 steel. It has been assessed by micro hardness, pin-on-disc tribosystem, and SEM through the nitrided layer for each nitriding time. The study relates to the performance of the compound layer and the diffusion layer with respect to adhesive wear. The results were analyzed in terms of the weight lost during wear, for nitrided steel with and without the compound layer, and for untreated steel. It has been observed that wear rate varies as a function of the tests conditions due to the presence of different wear mechanisms. Thus, for short tests conditions wear rate depends on two mechanisms: plastic deformation and adhesive wear, whereas for large tests conditions the mechanisms controlling wear rate are abrasive and oxidative wear. Furthermore, this study contains an analysis of the wear mechanisms of a nitrided part, founded on scanning electron microscopy (SEM) observations of the wear traces at various stages of the evolution of wear. The SEM examination of worn surfaces revealed signatures for the adhesion, abrasion, delamination and tribochemical (oxidative) modes of wear. This is an important issue for future research.
基金supported partially by the Higher Education Commission Research Project for Plasma Physics of Pakistan
文摘Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.
基金Funded by the Fundamental Research Funds for the Central Universities(Nos.2232018A3-08,2232018D3-04)
文摘Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.