Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
在管道泄漏检测中,压力信号中的噪声干扰会降低传统互相关法的定位精度。传统的去噪算法对环境的适应性差,去噪效果不理想。为此,提出了一种奇异值分解SVD(Singular Value Decomposition)与非负矩阵分解NMF(Nonnegative Matrix Factoriz...在管道泄漏检测中,压力信号中的噪声干扰会降低传统互相关法的定位精度。传统的去噪算法对环境的适应性差,去噪效果不理想。为此,提出了一种奇异值分解SVD(Singular Value Decomposition)与非负矩阵分解NMF(Nonnegative Matrix Factorization)相结合的管道泄漏信号去噪算法。该方法首先通过奇异值分解确定非负矩阵分解的阶数并对其初始化;然后,采用改进的非负矩阵分解算法对原信号进行迭代分解,获得去噪信号;最后,对去噪信号进行处理后通过互相关计算时延,并结合泄漏信号的传播速度实现泄漏定位。大量实验结果表明,SVD-NMF算法能够显著降低迭代次数,提高去噪速度;同时在泄漏检测中,能够达到去除噪声干扰,提高定位精度的目的。展开更多
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。
文摘在管道泄漏检测中,压力信号中的噪声干扰会降低传统互相关法的定位精度。传统的去噪算法对环境的适应性差,去噪效果不理想。为此,提出了一种奇异值分解SVD(Singular Value Decomposition)与非负矩阵分解NMF(Nonnegative Matrix Factorization)相结合的管道泄漏信号去噪算法。该方法首先通过奇异值分解确定非负矩阵分解的阶数并对其初始化;然后,采用改进的非负矩阵分解算法对原信号进行迭代分解,获得去噪信号;最后,对去噪信号进行处理后通过互相关计算时延,并结合泄漏信号的传播速度实现泄漏定位。大量实验结果表明,SVD-NMF算法能够显著降低迭代次数,提高去噪速度;同时在泄漏检测中,能够达到去除噪声干扰,提高定位精度的目的。