In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' ...In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' of the job on position i and a “normal' processing time of the job. The criteria considered is to minimize scheduled length of all jobs. A lemma is proposed and proved. In no deadline constrained condition, the problem belongs to polynomial time algorithm. It is proved by using 3 partition that if the problem is deadline constrained, its complexity is strong NP hard. Finally, a conjuncture is proposed that is to be proved.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
Two sets are close if their symmetric difference is a sparse set. It is shown that NP-hard sets are not C=P-close unless NP C=C=P. This improves the previous result and has implication in quantum compulation.
Assume there are several states, and the objective function f\+s(x) is linked with each state s. Robust optimization is to solve the following problem: min x∈X max s∈Sf\+s(x)where X is the feasible s...Assume there are several states, and the objective function f\+s(x) is linked with each state s. Robust optimization is to solve the following problem: min x∈X max s∈Sf\+s(x)where X is the feasible solution set, and S is the collection of states.\;It has been showed that most of robust combinatorial optimization problems are NP\|hard in strong sense. In this paper, we will discuss the borderline between the ′easy′ and the ′hard′ cases of robust combinatorial optimization problems, and further present a heuristic frame work to solve the ′hard′ problems and discuss their concrete implementation of the heuristic method.展开更多
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ...We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.展开更多
文摘In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' of the job on position i and a “normal' processing time of the job. The criteria considered is to minimize scheduled length of all jobs. A lemma is proposed and proved. In no deadline constrained condition, the problem belongs to polynomial time algorithm. It is proved by using 3 partition that if the problem is deadline constrained, its complexity is strong NP hard. Finally, a conjuncture is proposed that is to be proved.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
文摘Two sets are close if their symmetric difference is a sparse set. It is shown that NP-hard sets are not C=P-close unless NP C=C=P. This improves the previous result and has implication in quantum compulation.
基金Research is supported by the National 863 Program ( No.863- 306- Z T
文摘Assume there are several states, and the objective function f\+s(x) is linked with each state s. Robust optimization is to solve the following problem: min x∈X max s∈Sf\+s(x)where X is the feasible solution set, and S is the collection of states.\;It has been showed that most of robust combinatorial optimization problems are NP\|hard in strong sense. In this paper, we will discuss the borderline between the ′easy′ and the ′hard′ cases of robust combinatorial optimization problems, and further present a heuristic frame work to solve the ′hard′ problems and discuss their concrete implementation of the heuristic method.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding thiswork through Research Group No.RG-21-09-17.
文摘We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.