As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three all...As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.展开更多
Background Laryngeal carcinoma is a common malignant tumor of the upper respiratory tract, and in 95% of cases the tumor is laryngeal squamous cell carcinoma (LSCC). The abnormity of SH3-domain GRB2-1ike 2 (SH3GL2...Background Laryngeal carcinoma is a common malignant tumor of the upper respiratory tract, and in 95% of cases the tumor is laryngeal squamous cell carcinoma (LSCC). The abnormity of SH3-domain GRB2-1ike 2 (SH3GL2) gene was found in LSCC. In order to clarify the relationship between SH3GL2 gene and LSCC, we evaluated the expression of the SH3GL2 gene in LSCC. Method Real-time PCR, immunohistochemistry and Western blotting were used to detect the mRNA and protein expression and find the various rules of SH3GL2 gene in LSCC. Results The result of real-time PCR showed that the expression level of SH3GL2 mRNA in LSCC tissue was apparently down-regulated; immunohistochemical analysis showed that SH3GL2 protein was mainly located in cytoplasm, the rate of positive cells and SH3GL2 protein expression level were fluctuated with the pathological classification of LSCC; the result of Western blotting showed that SH3GL2 protein was down-regulated significantly in LSCC samples, especially in metastatic lymph nodes. Conclusions These results suggest that SH3GL2 is a LSCC related gene and its expression level is fluctuated with the pathological classification which indicate that SH3GL2 participates in the development and progression of LSCC. And it may be considered as a novel tumor marker to find both a new anti-oncogene and relative factors of invasion and metastasis of laryngeal carcinoma.展开更多
BACKGROUND: Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that resul...BACKGROUND: Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that results in organ curvature, phototropism is regulated through a complex set of signal perception and transduction events that move from the plasma membrane to the nucleus. In nature phototropism is one of several plant responses that have evolved to optimize photosynthesis and growth. OBJECTIVE: In the present work we will review the state of the field with respect to the molecules and mechanisms associated with phototropism in land plants. METHODS: A systematic literature search was done to identify relevant advances in the field. Though we tried to focus on literature within the past decade (1998-present), we have discussed and cited older literature where appropriate because of context or its significant impact to the present field. Several previous review articles are also cited where appropriate and readers should seek those out. RESULTS: A total of 199 articles are cited that fulfill the criteria listed above. CONCLUSIONS: Though important numerous and significant advances have been made in our understanding of the molecular, biochemical, cell biological and physiologic mechanisms underlying phototropism in land plants over the past decade, there are many remaining unanswered questions. The future is indeed bright for researchers in the field and we look forward to the next decade worth of discoveries.展开更多
文摘As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.
基金the National Natural Science Foundation(No.30171008)National"863"Project(No.2002BAT11A08-18).
文摘Background Laryngeal carcinoma is a common malignant tumor of the upper respiratory tract, and in 95% of cases the tumor is laryngeal squamous cell carcinoma (LSCC). The abnormity of SH3-domain GRB2-1ike 2 (SH3GL2) gene was found in LSCC. In order to clarify the relationship between SH3GL2 gene and LSCC, we evaluated the expression of the SH3GL2 gene in LSCC. Method Real-time PCR, immunohistochemistry and Western blotting were used to detect the mRNA and protein expression and find the various rules of SH3GL2 gene in LSCC. Results The result of real-time PCR showed that the expression level of SH3GL2 mRNA in LSCC tissue was apparently down-regulated; immunohistochemical analysis showed that SH3GL2 protein was mainly located in cytoplasm, the rate of positive cells and SH3GL2 protein expression level were fluctuated with the pathological classification of LSCC; the result of Western blotting showed that SH3GL2 protein was down-regulated significantly in LSCC samples, especially in metastatic lymph nodes. Conclusions These results suggest that SH3GL2 is a LSCC related gene and its expression level is fluctuated with the pathological classification which indicate that SH3GL2 participates in the development and progression of LSCC. And it may be considered as a novel tumor marker to find both a new anti-oncogene and relative factors of invasion and metastasis of laryngeal carcinoma.
文摘BACKGROUND: Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that results in organ curvature, phototropism is regulated through a complex set of signal perception and transduction events that move from the plasma membrane to the nucleus. In nature phototropism is one of several plant responses that have evolved to optimize photosynthesis and growth. OBJECTIVE: In the present work we will review the state of the field with respect to the molecules and mechanisms associated with phototropism in land plants. METHODS: A systematic literature search was done to identify relevant advances in the field. Though we tried to focus on literature within the past decade (1998-present), we have discussed and cited older literature where appropriate because of context or its significant impact to the present field. Several previous review articles are also cited where appropriate and readers should seek those out. RESULTS: A total of 199 articles are cited that fulfill the criteria listed above. CONCLUSIONS: Though important numerous and significant advances have been made in our understanding of the molecular, biochemical, cell biological and physiologic mechanisms underlying phototropism in land plants over the past decade, there are many remaining unanswered questions. The future is indeed bright for researchers in the field and we look forward to the next decade worth of discoveries.