A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical r...A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions.Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.展开更多
The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-s...The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718302 and 2021YFA1402104)the National Natural Science Foundation of China(Grant No.12075310)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions.Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant No.62071118)the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3)。
文摘The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.