Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typic...Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.展开更多
The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by sc...The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by scanning electron microscope(SEM),scanning probe microscopy(SPM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The results showed that the resistance of tin coating,Rc,was essentially constant but the charge transfer resistance,Rct,decreased by 2 orders of magnitude,which indicated that the tin coating was not seriously corroded while the carbon steel substrate was corroded continuously.The corrosion of tinplate in 0.5 mol/L NaCl solution was mainly the dissolution of carbon steel substrate because of the defects in the tin layer and the corrosion product was mainly γ-FeOOH.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vac...The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vacuum furnace, holding for 16 h at 177℃, and then cooling in air. The results showed intergranular corrosion (IGC) occurred as an aged AZ80 sample was immersed in 3.5 wt pct NaCI aqueous solution for 1 h and the narrow path attack progressed predominantly along the bulk β phase in the grain boundaries or took place in the eutectic areas. IGC was attributed to the network distribution of β phase along the grain boundaries, the depleted aluminium in the precipitation areas and the breakdown potential.展开更多
Zinc is common metal used for steel protection from corrosion.The addition of further element,such as Ni,can modify the corrosion rate and maintain sacrificial protection.The anodic dissolution behavior of Zn,Ni and Z...Zinc is common metal used for steel protection from corrosion.The addition of further element,such as Ni,can modify the corrosion rate and maintain sacrificial protection.The anodic dissolution behavior of Zn,Ni and Zn-Ni alloys with different Ni contents(from 0.5% to 10%,mass fraction) in 3.5% Na Cl solution was investigated using potentiodynamic,potentiostatic and galvanostatic techniques.The composition and microstructure of the corrosion layer on Zn,Ni and Zn-Ni alloys were characterized by energy-dispersive X-ray spectroscopy analysis(EDX) and scanning electron microscopy(SEM).The galvanostatic curves show that the anodic behavior of all investigated electrodes exhibits active/passive transition and the tendency of the alloys to passivity decreases with the increase in Ni content,except for 99.5Zn-0.5Ni alloy.While the potentiodynamic curves exhibit active passive transition only for pure Zn.Surface analysis reveals the presence of oxides,chlorides and metal hydroxide chloride in corrosion products,and very small cracks are observed for 90Zn-10 Ni alloy compared with that of Zn.展开更多
The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciproc...The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciprocal of temperature and the logarithm ofthe conductance but their slopes are different at different pressures. The relations between theconductance and pressure is rather complex and there are some discontinuities: in the range of2.25-3.75 GPa, the conductance increases with the pressure; in the range of 1.25-2.0 GPa, theconductance is not related to the pressure; and at a pressure of 0.75 GPa, the conductance ishigher than that at the pressures nearby. This reflects that the NaCl solution has rather differentproperties of electronic chemistry at various pressures, and probably is an important cause forthe existence of the layers with high electrical conductance and low velocity in the Earth's crustand mantle.展开更多
Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The resu...Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.展开更多
Sodium salts of mono-and di-carboxylic acids(glycolic,fumaric and benzoic acid)were studied as corrosion inhibitors for AM50 alloy in pH neutral aqueous NaCl environment.Hydrogen evolution,electrochemical and surface ...Sodium salts of mono-and di-carboxylic acids(glycolic,fumaric and benzoic acid)were studied as corrosion inhibitors for AM50 alloy in pH neutral aqueous NaCl environment.Hydrogen evolution,electrochemical and surface characterization techniques were employed to reveal their corrosion inhibition mechanism,whilst the molecular features of inhibitors were investigated by quantum chemical calculation.All inhibitors reduced anodic dissolution of AM50 and their efficiency generally increased with time and concentration from 5 mM to 100 mM.The inhibition mechanism can be described as physisorption of inhibitive molecules on the surface of the intrinsic oxide layer followed by chemisorption with Mg^(2+)and Al^(3+),and the difference in inhibition action among these inhibitors was explained on the molecular scale.展开更多
The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effe...The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effect of boron on the corrosion properties and corrosion morphology of the rust layer formed on the surface of HSLA steel was studied by means of corrosion weightlessness method,polarization curve,scanning electron microscopy(SEM)and X-ray diffraction(XRD)technique.The mass loss measurements and polarization curves revealed that the corrosion resistance of HSLA steel is improved by adding trace boron.XRD and SEM results show that the rust layer is produced byα-FeOOH(the main protective phase),Fe_(3)O_(4) andγ-FeOOH,and boron contributes to stability ofα-FeOOH.Based on the first-principles calculation,the solid solution of B atom in the corrosion product is beneficial to the fixation of Cl atom and to the reduction of the corrosion of Cl atom to the steel matrix.展开更多
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD...Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.展开更多
Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD rea...Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.展开更多
The corrosion behavior of Ti60 alloy was investigated under continuous NaCl solution spraying at 600℃.Results indicate that the corrosion rate of the Ti60 alloy is lower than that obtained with the solid NaCl deposit...The corrosion behavior of Ti60 alloy was investigated under continuous NaCl solution spraying at 600℃.Results indicate that the corrosion rate of the Ti60 alloy is lower than that obtained with the solid NaCl deposit film in HO+O.The outer corrosion products are compact layers mainly containing NaTiOand nanocrystalline TiO.The inner layer is mainly composed of TiO,Ti O and SnO.TiO has a lamellar structure,and TiO has a strip-shaped structure.A mixed corrosion mechanism including classic oxidation and active oxidation occurred under NaCl solution spraying environment:the first stage was controlled by the classic oxidation mechanism with the promotion by the active oxidation following parabolic curves,and the second stage was controlled by the active oxidation mechanism following a linear rise in the mass gain curve.The mixed corrosion mechanism between classic oxidation and active oxidation produced a relatively dense Ti oxides scale,which decreased the corrosion rate.展开更多
The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy was investigated in air and 3.5 wt%NaCl solution. Epoxy coating as a new method was used to improve the corrosion fatigue property of the material.Result...The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy was investigated in air and 3.5 wt%NaCl solution. Epoxy coating as a new method was used to improve the corrosion fatigue property of the material.Results show that the fatigue limit(FL) of the coated specimens is higher than that of the uncoated specimens in3.5 wt% NaCl solution because of the strengthening and blocking functions of the epoxy coating. The FL of the coated specimens in 3.5 wt% NaCl solution is as high as that in air. It implies that the coated specimens are not as sensitive to the environment as the magnesium alloy. The low tensile strength and the short elongation of the pure epoxy coating lead to that the fatigue crack of the coated specimen is always initiated from the epoxy-coating film Pores and pinholes accelerate the fatigue crack initiation process. Pinholes are caused by the corrosion reactions between the epoxy coating and the NaCl solution.展开更多
To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow str...To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD).展开更多
Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium ch...Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.展开更多
The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation...The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation.Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate.展开更多
The polarization curves of theα-PHASE aluminium bronze measured in 5%NaCl electrochemically show that the corrosion process of the alloy is controlled by the diffusion of oxygen.The corrosion surface of theα-PHASE A...The polarization curves of theα-PHASE aluminium bronze measured in 5%NaCl electrochemically show that the corrosion process of the alloy is controlled by the diffusion of oxygen.The corrosion surface of theα-PHASE A1 bronze in NaCl solution for a short time was analysed by X-ray Photoelectron Spectroscopy(XPS).The results indicate that the initial corrosion product of the A1 bronze consists of a simple Cu20 phase.A1 and Ni are incorporated in Cu20 lattice structure in the form of ions,and none of the aluminium compound can be detected.The authors propose that the initial corrosion mechanism ofα-PHASE A1 bronzes in NaCl solution should include oxidation,reduction and diffusion.展开更多
In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and '...In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and 'free-volume' contribution. The VERS-model is used to calculate Gibbs excess energy; 'phantom network' theory to describe the elastic properties of polymer network, and 'free-volume' contribution to account for additional difference in the size of the species. To test the model, a series of N-isopropylacrylamide based hydrogels are synthesized by free radical polymerization in oxygen-free, deionized water at 25℃ under nitrogen atmosphere. Then, the degree of swelling of all investigated gels as well as the partition of the solute between the gel phase and the surrounding coexisting liquid phase are measured in aqueous solution of sodium chloride. The model test demonstrates that the swelling behavior correlated and predicted by the model agrees with the experimental data within the experimental uncertainty. The phase transition appeared in the experiment, and the influences of the total mass fraction of polymerizable materials ζgel as well as the mole fraction of the crosslinking agent yCR on the swelling behavior of IPAAm-gels can also be predicted correctly. All these show the potential of such model for correlation and prediction of the swelling behavior of hydrogels in aqueous solutions of electrolytes.展开更多
This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, wh...This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, which had both crevice and residual stress, mainly in 3 % NaCl solution at various temperatures to determine the critical temperature for SCC at and below which the steel would not suffer from SCC. The effects of individual alloying element of silicon, manganese and copper on SCC of 18Cr 14Ni steels which phosphor content is 0.002 % and molybdenum content is 0.01 % were examined. Addition of 1 or 2 % of copper has beneficial effect on resistance to SCC, while increasing silicon or manganese content has no significant effect. Critical temperature of the steel with 0.002 % of phosphor and 2 % of copper is 150 ℃, which is markedly higher than 50 ℃ of 304L steel. However, the beneficial effect of copper is reduced with increasing phosphor content. From practical viewpoint, the modified steel with good SCC resistance should have 0.01 %-0.015 % of phosphor and 0.3 % or more of molybdenum, because it is very difficult to reduce phosphor content below 0 008 % industrially and such molybdenum content is inevitably introduced through cost saving melting process using return steel. Aluminium is to be added as another alloying element and 3 % of aluminium combined with 2 % of copper has been found to negate the deleterious effects of increased phosphor and molybdenum content. As a candidate steel at this stage, 14Cr 16Ni 0.013P 2Cu 1Al (0.3 1)Mo steel has critical temperature of 110 ℃.展开更多
The size of pores and throats is at the nano- meter scale in tight oil and shale gas zones, and the resistivity of these reservoirs is very high, so the reservoirs show more dielectric properties than conductivity pro...The size of pores and throats is at the nano- meter scale in tight oil and shale gas zones, and the resistivity of these reservoirs is very high, so the reservoirs show more dielectric properties than conductivity proper- ties. The conductive and dielectric characteristics of a parallel plate capacitor full of fresh water, NaCl solutions, and solid dielectrics, for example, sands are investigated in this paper, and the capacitance data of the non-gas capacitor are measured at different salinities and frequencies by a spectrum analyzer. The experimental results illustrate that the capacitance of this kind of capacitor is directly pro- portional to the salinity of the solutions and inversely proportional to the measuring frequency, the same as a vacuum parallel plate capacitor. The remarkable phenom- enon, however, is that the capacitance is inversely pro- portional to the square of the distance between two plates. The specific characteristic of this capacitor is different from the conventional parallel plate capacitor. In order to explain this phenomenon, the paper proposed a new concept, named "single micro ion capacitor", and established a novel model to describe the characteristics of this particular capacitor. Based on this new model, the theoretical capacitance value of the single micro ion capacitor is calculated, and its polarization and relaxation mechanisms are analyzed.展开更多
文摘Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaningand chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlledby changing relevant influential parameters. In particular, in this work, we experimentally investigate theeffect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at afrequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualizationusing heat maps. It is found that at low NaCl concentration (0.3 mol/L), the foil destruction rate is higher thanin distilled water. At higher concentrations of salt, cavitation takes place mainly in the upper part of the container.
基金Project(2011CB610500) supported by the National Basic Research Program of China
文摘The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by scanning electron microscope(SEM),scanning probe microscopy(SPM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The results showed that the resistance of tin coating,Rc,was essentially constant but the charge transfer resistance,Rct,decreased by 2 orders of magnitude,which indicated that the tin coating was not seriously corroded while the carbon steel substrate was corroded continuously.The corrosion of tinplate in 0.5 mol/L NaCl solution was mainly the dissolution of carbon steel substrate because of the defects in the tin layer and the corrosion product was mainly γ-FeOOH.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
基金the National HiTech R. & D. Program under grant No. 2001AA331050 Key Natural Science Foundation of Chongqing Science and Technology Commission under grant No. 200413A4002 Science & Technology Research Project of Chongqing Education Commission under grant No. KJ050604.
文摘The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vacuum furnace, holding for 16 h at 177℃, and then cooling in air. The results showed intergranular corrosion (IGC) occurred as an aged AZ80 sample was immersed in 3.5 wt pct NaCI aqueous solution for 1 h and the narrow path attack progressed predominantly along the bulk β phase in the grain boundaries or took place in the eutectic areas. IGC was attributed to the network distribution of β phase along the grain boundaries, the depleted aluminium in the precipitation areas and the breakdown potential.
文摘Zinc is common metal used for steel protection from corrosion.The addition of further element,such as Ni,can modify the corrosion rate and maintain sacrificial protection.The anodic dissolution behavior of Zn,Ni and Zn-Ni alloys with different Ni contents(from 0.5% to 10%,mass fraction) in 3.5% Na Cl solution was investigated using potentiodynamic,potentiostatic and galvanostatic techniques.The composition and microstructure of the corrosion layer on Zn,Ni and Zn-Ni alloys were characterized by energy-dispersive X-ray spectroscopy analysis(EDX) and scanning electron microscopy(SEM).The galvanostatic curves show that the anodic behavior of all investigated electrodes exhibits active/passive transition and the tendency of the alloys to passivity decreases with the increase in Ni content,except for 99.5Zn-0.5Ni alloy.While the potentiodynamic curves exhibit active passive transition only for pure Zn.Surface analysis reveals the presence of oxides,chlorides and metal hydroxide chloride in corrosion products,and very small cracks are observed for 90Zn-10 Ni alloy compared with that of Zn.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.49573192 and 49603049)
文摘The electrical conductance of 0.025 mol NaCl solution was measured at0.25-3.75 GPa and 20-370℃. As shown by the results, the conductance increases with temper-ature, and there is a liner relation between the reciprocal of temperature and the logarithm ofthe conductance but their slopes are different at different pressures. The relations between theconductance and pressure is rather complex and there are some discontinuities: in the range of2.25-3.75 GPa, the conductance increases with the pressure; in the range of 1.25-2.0 GPa, theconductance is not related to the pressure; and at a pressure of 0.75 GPa, the conductance ishigher than that at the pressures nearby. This reflects that the NaCl solution has rather differentproperties of electronic chemistry at various pressures, and probably is an important cause forthe existence of the layers with high electrical conductance and low velocity in the Earth's crustand mantle.
文摘Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.
基金the financial support by Guangdong Basic and Applied Basic Research Founding (Grand No. 2020A1515110754)MOE Key Lab of Disaster Forest and Control in Engineering, Jinan University (Grand No. 20200904008)+4 种基金Educational Commission of Guangdong Province (Grand No. 2020KTSCX012)the Fundamental Research Funds for Central Universities (Grand No. 21620342)the High Performance Public Computing Service Platform of Jinan Universitythe financial support from National Natural Science Foundation of China (Grand No. 52071067)the Fundamental Research Funds for the Central Universities (Grand No. N2002009)。
文摘Sodium salts of mono-and di-carboxylic acids(glycolic,fumaric and benzoic acid)were studied as corrosion inhibitors for AM50 alloy in pH neutral aqueous NaCl environment.Hydrogen evolution,electrochemical and surface characterization techniques were employed to reveal their corrosion inhibition mechanism,whilst the molecular features of inhibitors were investigated by quantum chemical calculation.All inhibitors reduced anodic dissolution of AM50 and their efficiency generally increased with time and concentration from 5 mM to 100 mM.The inhibition mechanism can be described as physisorption of inhibitive molecules on the surface of the intrinsic oxide layer followed by chemisorption with Mg^(2+)and Al^(3+),and the difference in inhibition action among these inhibitors was explained on the molecular scale.
基金This work is supported by National Natural Science Foundation of China(52004190).
文摘The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effect of boron on the corrosion properties and corrosion morphology of the rust layer formed on the surface of HSLA steel was studied by means of corrosion weightlessness method,polarization curve,scanning electron microscopy(SEM)and X-ray diffraction(XRD)technique.The mass loss measurements and polarization curves revealed that the corrosion resistance of HSLA steel is improved by adding trace boron.XRD and SEM results show that the rust layer is produced byα-FeOOH(the main protective phase),Fe_(3)O_(4) andγ-FeOOH,and boron contributes to stability ofα-FeOOH.Based on the first-principles calculation,the solid solution of B atom in the corrosion product is beneficial to the fixation of Cl atom and to the reduction of the corrosion of Cl atom to the steel matrix.
文摘Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.
基金supported by National Natural Science Foundation of China (Nos. 12075037 and 22206013)the Natural Science Foundation of Jiangsu Province (No. BK20210857)the Leading Innovative Talents Cultivation Project of Changzhou City (No. CQ20210083)。
文摘Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.
基金the National Natural Science Foundation of China(Nos.U20B2026 and 51871049)。
文摘The corrosion behavior of Ti60 alloy was investigated under continuous NaCl solution spraying at 600℃.Results indicate that the corrosion rate of the Ti60 alloy is lower than that obtained with the solid NaCl deposit film in HO+O.The outer corrosion products are compact layers mainly containing NaTiOand nanocrystalline TiO.The inner layer is mainly composed of TiO,Ti O and SnO.TiO has a lamellar structure,and TiO has a strip-shaped structure.A mixed corrosion mechanism including classic oxidation and active oxidation occurred under NaCl solution spraying environment:the first stage was controlled by the classic oxidation mechanism with the promotion by the active oxidation following parabolic curves,and the second stage was controlled by the active oxidation mechanism following a linear rise in the mass gain curve.The mixed corrosion mechanism between classic oxidation and active oxidation produced a relatively dense Ti oxides scale,which decreased the corrosion rate.
基金financially supported by the National Natural Science Foundation of China (Nos. 51001079, 21201129, 51208333, and 51374151)Natural Science Foundation of Shanxi Province (No. 201101102002)+1 种基金the China Postdoctoral Science Foundation (No. 20100471586)the Doctoral Fund of Ministry of Education of China (No. 20091402110010)
文摘The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy was investigated in air and 3.5 wt%NaCl solution. Epoxy coating as a new method was used to improve the corrosion fatigue property of the material.Results show that the fatigue limit(FL) of the coated specimens is higher than that of the uncoated specimens in3.5 wt% NaCl solution because of the strengthening and blocking functions of the epoxy coating. The FL of the coated specimens in 3.5 wt% NaCl solution is as high as that in air. It implies that the coated specimens are not as sensitive to the environment as the magnesium alloy. The low tensile strength and the short elongation of the pure epoxy coating lead to that the fatigue crack of the coated specimen is always initiated from the epoxy-coating film Pores and pinholes accelerate the fatigue crack initiation process. Pinholes are caused by the corrosion reactions between the epoxy coating and the NaCl solution.
基金financial support from the National Natural Science Foundation of China (No. 51171011)
文摘To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD).
基金supported by the National Natural Science Foundation of China ( Grant No 40876041)Science and Technology Basic Research Program of Qingdao (Grant No 09-1-3-16-jch)the National Key Technology Research and Development Program of China (Grant No 2007 BAB27B01)
文摘Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.91227115+1 种基金11274319and 11421063)
文摘The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation.Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate.
文摘The polarization curves of theα-PHASE aluminium bronze measured in 5%NaCl electrochemically show that the corrosion process of the alloy is controlled by the diffusion of oxygen.The corrosion surface of theα-PHASE A1 bronze in NaCl solution for a short time was analysed by X-ray Photoelectron Spectroscopy(XPS).The results indicate that the initial corrosion product of the A1 bronze consists of a simple Cu20 phase.A1 and Ni are incorporated in Cu20 lattice structure in the form of ions,and none of the aluminium compound can be detected.The authors propose that the initial corrosion mechanism ofα-PHASE A1 bronzes in NaCl solution should include oxidation,reduction and diffusion.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chineses Sehiors of State Education Ministry, Science Technology Ministry of Fujian (No. 2001Z046).
文摘In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, 'phantom network' theory and 'free-volume' contribution. The VERS-model is used to calculate Gibbs excess energy; 'phantom network' theory to describe the elastic properties of polymer network, and 'free-volume' contribution to account for additional difference in the size of the species. To test the model, a series of N-isopropylacrylamide based hydrogels are synthesized by free radical polymerization in oxygen-free, deionized water at 25℃ under nitrogen atmosphere. Then, the degree of swelling of all investigated gels as well as the partition of the solute between the gel phase and the surrounding coexisting liquid phase are measured in aqueous solution of sodium chloride. The model test demonstrates that the swelling behavior correlated and predicted by the model agrees with the experimental data within the experimental uncertainty. The phase transition appeared in the experiment, and the influences of the total mass fraction of polymerizable materials ζgel as well as the mole fraction of the crosslinking agent yCR on the swelling behavior of IPAAm-gels can also be predicted correctly. All these show the potential of such model for correlation and prediction of the swelling behavior of hydrogels in aqueous solutions of electrolytes.
文摘This was a feasibility study for a modified 304 steel resistant to stress corrosion cracking (SCC) in aqueous environment containing chloride. SCC tests were conducted potentiostaticaly with spot welded specimens, which had both crevice and residual stress, mainly in 3 % NaCl solution at various temperatures to determine the critical temperature for SCC at and below which the steel would not suffer from SCC. The effects of individual alloying element of silicon, manganese and copper on SCC of 18Cr 14Ni steels which phosphor content is 0.002 % and molybdenum content is 0.01 % were examined. Addition of 1 or 2 % of copper has beneficial effect on resistance to SCC, while increasing silicon or manganese content has no significant effect. Critical temperature of the steel with 0.002 % of phosphor and 2 % of copper is 150 ℃, which is markedly higher than 50 ℃ of 304L steel. However, the beneficial effect of copper is reduced with increasing phosphor content. From practical viewpoint, the modified steel with good SCC resistance should have 0.01 %-0.015 % of phosphor and 0.3 % or more of molybdenum, because it is very difficult to reduce phosphor content below 0 008 % industrially and such molybdenum content is inevitably introduced through cost saving melting process using return steel. Aluminium is to be added as another alloying element and 3 % of aluminium combined with 2 % of copper has been found to negate the deleterious effects of increased phosphor and molybdenum content. As a candidate steel at this stage, 14Cr 16Ni 0.013P 2Cu 1Al (0.3 1)Mo steel has critical temperature of 110 ℃.
基金Basic Science Program of Advanced Well Logging Technology of CNPC (2014A-2319)the Science and Technology Program (G12-3) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of SWPU (Southwest Petroleum University)
文摘The size of pores and throats is at the nano- meter scale in tight oil and shale gas zones, and the resistivity of these reservoirs is very high, so the reservoirs show more dielectric properties than conductivity proper- ties. The conductive and dielectric characteristics of a parallel plate capacitor full of fresh water, NaCl solutions, and solid dielectrics, for example, sands are investigated in this paper, and the capacitance data of the non-gas capacitor are measured at different salinities and frequencies by a spectrum analyzer. The experimental results illustrate that the capacitance of this kind of capacitor is directly pro- portional to the salinity of the solutions and inversely proportional to the measuring frequency, the same as a vacuum parallel plate capacitor. The remarkable phenom- enon, however, is that the capacitance is inversely pro- portional to the square of the distance between two plates. The specific characteristic of this capacitor is different from the conventional parallel plate capacitor. In order to explain this phenomenon, the paper proposed a new concept, named "single micro ion capacitor", and established a novel model to describe the characteristics of this particular capacitor. Based on this new model, the theoretical capacitance value of the single micro ion capacitor is calculated, and its polarization and relaxation mechanisms are analyzed.