The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching effic...The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.展开更多
The anodic reaction kinetics of zinc electrowinning was investigated on the titanium base RuO2 anode in the system of Zn(Ⅱ)-NH3-NH4Cl-H2O. The effects of stirring speed, ammonium chloride concentration and temperat...The anodic reaction kinetics of zinc electrowinning was investigated on the titanium base RuO2 anode in the system of Zn(Ⅱ)-NH3-NH4Cl-H2O. The effects of stirring speed, ammonium chloride concentration and temperature on anodic reaction rate were studied through the curve measurement of potentiostatic polarization. The results reveal that the electrochemically controlled anodic reaction obeys Tafel equation and the anodic reaction order for ammonium chloride is 1.056, with the apparent activation energy of 40.17 kJ/mol. The general equation of anodic reaction kinetics was obtained.展开更多
The crystal detachment behaviors from a chilling solid surface with vibration were investigated using a transparent NH4Cl-70%H2O alloy.The nucleation experiments of NH4Cl-70%H2O alloy were performed on a chilling surf...The crystal detachment behaviors from a chilling solid surface with vibration were investigated using a transparent NH4Cl-70%H2O alloy.The nucleation experiments of NH4Cl-70%H2O alloy were performed on a chilling surface generator with various vibration frequency from 20 to 1 000 Hz and vibration acceleration from 10 to 100 m/s2.The results indicate that the crystal detach rate increases and the grains are refined with increasing vibration acceleration under a certain vibration frequency.It is interesting to note that,when the frequency is 50 Hz,acceleration is 100 m/s2,the crystal detach rate increases sharply and the grain refinement effect is strengthened.A special grain refinement phenomenon can be observed,when the vibration acceleration and frequency are up to a critical value.A power-based definition was introduced in order to describe the relationship between the vibration parameters and imposed power on the system.It is found that a power criterion exists for the grain refinement in the current system.展开更多
A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrit...A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.展开更多
基金Project(2007CB613604) supported by the Major State Basic Research Development Program of ChinaProject(50674104) supported by the National Natural Science Foundation of ChinaProject(GJJ08279) supported by the Department of Education of Jiangxi Province
文摘The leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system was studied. The effects of ore particle size, reaction temperature and the sum concentration of ammonium ion and ammonia on the leaching efficiency of zinc were examined. The leaching kinetics of low-grade zinc oxide ore in NH3-NH4Cl-H2O system follows the kinetic law of shrinking-core model. The results show that diffusion through the inert particle pores is the leaching kinetics rate controlling step. The calculated apparent activation energy of the process is about 7.057 kJ/mol. The leaching efficiency of zinc is 92.1% under the conditions of ore particle size of 69 μm, holding at 80 ℃ for 60 min, sum ammonia concentration of 7.5 mol/L, the molar ratio of ammonium to ammonia being 2-1, and the ratio (g/mL) of solid to liquid being 1-10.
文摘The anodic reaction kinetics of zinc electrowinning was investigated on the titanium base RuO2 anode in the system of Zn(Ⅱ)-NH3-NH4Cl-H2O. The effects of stirring speed, ammonium chloride concentration and temperature on anodic reaction rate were studied through the curve measurement of potentiostatic polarization. The results reveal that the electrochemically controlled anodic reaction obeys Tafel equation and the anodic reaction order for ammonium chloride is 1.056, with the apparent activation energy of 40.17 kJ/mol. The general equation of anodic reaction kinetics was obtained.
基金Projects(50571029,50771083) supported by the National Natural Science Foundation of ChinaProjects(02-TZ-2008,36-TP-2009) supported by State Key Laboratory of Solidification Processing in NWPU,China
文摘The crystal detachment behaviors from a chilling solid surface with vibration were investigated using a transparent NH4Cl-70%H2O alloy.The nucleation experiments of NH4Cl-70%H2O alloy were performed on a chilling surface generator with various vibration frequency from 20 to 1 000 Hz and vibration acceleration from 10 to 100 m/s2.The results indicate that the crystal detach rate increases and the grains are refined with increasing vibration acceleration under a certain vibration frequency.It is interesting to note that,when the frequency is 50 Hz,acceleration is 100 m/s2,the crystal detach rate increases sharply and the grain refinement effect is strengthened.A special grain refinement phenomenon can be observed,when the vibration acceleration and frequency are up to a critical value.A power-based definition was introduced in order to describe the relationship between the vibration parameters and imposed power on the system.It is found that a power criterion exists for the grain refinement in the current system.
基金Projects (2005CB724105, 2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010, 51171089) supported by the National Natural Science Foundation of China+1 种基金Project (2007AA04Z141) supported by the High-Tech Research and Development Program of ChinaProjects (2009ZX04006-041-04, 2011ZX04014-052) supported by the Important National Science & Technology Specific
文摘A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.