期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Chinese multi-document personal name disambiguation 被引量:8
1
作者 Wang Houfeng(王厚峰) Mei Zheng 《High Technology Letters》 EI CAS 2005年第3期280-283,共4页
This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors deno... This paper presents a new approach to determining whether an interested personal name across doeuments refers to the same entity. Firstly,three vectors for each text are formed: the personal name Boolean vectors denoting whether a personal name occurs the text the biographical word Boolean vector representing title, occupation and so forth, and the feature vector with real values. Then, by combining a heuristic strategy based on Boolean vectors with an agglomeratie clustering algorithm based on feature vectors, it seeks to resolve multi-document personal name coreference. Experimental results show that this approach achieves a good performance by testing on "Wang Gang" corpus. 展开更多
关键词 personal name disambiguation Chinese multi-document heuristic strategy. agglomerative clustering
下载PDF
Towards Effective Author Name Disambiguation by Hybrid Attention
2
作者 Qian Zhou Wei Chen +4 位作者 Peng-Peng Zhao An Liu Jia-Jie Xu Jian-Feng Qu Lei Zhao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期929-950,共22页
Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studie... Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studies have proposed various approaches based on different types of information,such as raw document features(e.g.,co-authors,titles,and keywords),the fusion feature(e.g.,a hybrid publication embedding based on multiple raw document features),the local structural information(e.g.,a publication's neighborhood information on a graph),and the global structural information(e.g.,interactive information between a node and others on a graph).However,there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so far.To fill the gap,we propose a novel framework named EAND(Towards Effective Author Name Disambiguation by Hybrid Attention).Specifically,we design a novel feature extraction model,which consists of three hybrid attention mechanism layers,to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients,raw document features,and the fusion feature.Each hybrid attention mechanism layer contains three key modules:a local structural perception,a global structural perception,and a feature extractor.Additionally,the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector space.Experimental results on two real-world datasets demonstrate that EAND achieves superior performance,outperforming state-of-the-art methods by at least+2.74%in terms of the micro-F1 score and+3.31%in terms of the macro-F1 score. 展开更多
关键词 author name disambiguation multiple-feature information hybrid attention pruning strategy structural information loss of vector space
原文传递
Incorporating multi-kernel function and Internet verification for Chinese person name disambiguation 被引量:2
3
作者 Ruifeng XU Lin GUI +2 位作者 Qin LU Shuai WANG Jian XU 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第6期1026-1038,共13页
The study on person name disambiguation aims to identify different entities with the same person name through document linking to different entities. The traditional disambiguation approach makes use of words in docum... The study on person name disambiguation aims to identify different entities with the same person name through document linking to different entities. The traditional disambiguation approach makes use of words in documents as features to distinguish different entities. Due to the lack of use of word order as a feature and the limited use of external knowledge, the traditional approach has performance limitations. This paper presents an approach for named entity disambiguation through entity linking based on a multi- kernel function and Internet verification to improve Chinese person name disambiguation. The proposed approach extends a linear kernel that uses in-document word features by adding a string kernel to construct a multi-kernel function. This multi-kernel can then calculate the similarities between an input document and the entity descriptions in a named per- son knowledge base to form a ranked list of candidates to different entities. Furthermore, Internet search results based on keywords extracted from the input document and entity descriptions in the knowledge base are used to train classifiers for verification. The evaluations on CIPS-SIGHAN 2012 person name disambiguation bakeoff dataset show that the use of word orders and Internet knowledge through a multi-kernel function can improve both precision and recall and our system has achieved state-of-the-art performance. 展开更多
关键词 Chinese person name disambiguation Internet verification string kemel multi-kemel function machine learning
原文传递
AMiner:Search and Mining of Academic Social Networks 被引量:12
4
作者 Huaiyu Wan Yutao Zhang +1 位作者 Jing Zhang Jie Tang 《Data Intelligence》 2019年第1期58-76,共19页
AMiner is a novel online academic search and mining system,and it aims to provide a systematic modeling approach to help researchers and scientists gain a deeper understanding of the large and heterogeneous networks f... AMiner is a novel online academic search and mining system,and it aims to provide a systematic modeling approach to help researchers and scientists gain a deeper understanding of the large and heterogeneous networks formed by authors,papers,conferences,journals and organizations.The system is subsequently able to extract researchers’profiles automatically from the Web and integrates them with published papers by a way of a process that first performs name disambiguation.Then a generative probabilistic model is devised to simultaneously model the different entities while providing a topic-level expertise search.In addition,AMiner offers a set of researcher-centered functions,including social influence analysis,relationship mining,collaboration recommendation,similarity analysis and community evolution.The system has been in operation since 2006 and has been accessed from more than 8 million independent IP addresses residing in more than 200 countries and regions. 展开更多
关键词 Academic social networks Profile extraction name disambiguation Topic modeling Expertise Search Network mining
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部