期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Magnesium oxide(MgO)nanoadsorbents in wastewater treatment:A comprehensive review
1
作者 H.C.S.Perera V.Gurunanthanan +3 位作者 Anoop Singh M.M.M.G.P.G.Mantilaka G.Das Sandeep Arya 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1709-1773,共65页
Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examinat... Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examination of magnesium oxide(MgO)nanoparticles as an innovative nanoadsorbent for wastewater treatment,with a specific focus on heavy metal and dye removal.The review comprehensively explores various aspects of MgO nanoparticles,including their structural characteristics and synthesis techniques.The article delves into the morphology and crystallographic arrangement of MgO nanoparticles,offering insights into their structural attributes.Given the complexity of adsorption processes,the review identifies and analyzes parameters influencing the adsorption efficiency of MgO nanoparticles,such as temperature,pH,contact time,initial concentration,and co-existing ions.The interplay between these parameters and the adsorption capability of MgO nanoparticles emphasizes the importance of optimizing operational conditions.Furthermore,the review assesses various synthesis methods for MgO nanoparticles,including sol-gel,hydrothermal,precipitation,green synthesis,solvothermal,and template-assisted techniques.It discusses the advantages,limitations,and resulting nanoparticle characteristics of each method,enabling readers to grasp the implications of synthesis processes on adsorption efficiency.This comprehensive review consolidates current insights into the effectiveness of MgO nanoparticles as a potent nanoadsorbent for removing heavy metals and dyes from wastewater covering a wide spectrum of aspects related to MgO nanoparticles.Moreover,there is a need to investigate the use of MgO in the treatment of actual wastewater or river water,in order to leverage its cost-effectiveness and high efficiency for practical water treatment applications in real-time. 展开更多
关键词 MgO nanoparticles nanoadsorbent Wastewater treatment Heavy metals Dye separation ADSORPTION Synthesis methods
下载PDF
Selected Adsorbents for Removal of Contaminants from Wastewater: Towards Engineering Clay Minerals 被引量:1
2
作者 Kalebaila K. Kennedy Kenneth J. Maseka Misheck Mbulo 《Open Journal of Applied Sciences》 2018年第8期355-369,共15页
The provision and demand for safe water continues to be a major aspect for governments worldwide as the population continues to grow accompanied by an increase in anthropogenic activities that contaminate water bodies... The provision and demand for safe water continues to be a major aspect for governments worldwide as the population continues to grow accompanied by an increase in anthropogenic activities that contaminate water bodies. The common contaminants are the negatively charged ions such as sulfates, positive ions like heavy metals and organic molecules like dyes and phenols. Although, various methods exist for purification of wastewater, the adsorption process is a low cost method that uses readily available adsorbents. Activated carbon, although costly for developing countries, is still the most efficient adsorbent for a variety of substances. However, low cost adsorbents derived from biowaste have being actively explored in water purification. Photocatalytic nanostructured adsorbents not only play a bifunctional role in adsorbing contaminants but also are able to decompose organic pollutants in water using sunlight. The engineering of naturally abundant clay in most developing countries offers an even inexpensive way to clean-up wastewater. 展开更多
关键词 Adsorption WASTEWATER HEAVY Metals Organic POLLUTANTS Activated Carbon CLAY nanoadsorbent PHOTOCATALYSIS
下载PDF
A nanocomposite consisting of silica-coated magnetite and phenyl-functionalized graphene oxide for extraction of polycyclic aromatic hydrocarbon from aqueous matrices 被引量:2
3
作者 Shokouh Mahpishanian Hassan Sereshti Mohammad Ahmadvand 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期164-173,共10页
In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe3O4@SiO2@GO-PEA that can be applied to the magnetic solid-... In this study,graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe3O4@SiO2@GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons(PAHs) from water samples.The resulting microspheres(Fe3O4@SiO2@GO-PEA) were characterized by Fourier transform-infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),CHNS elemental analysis,and vibrating sample magnetometry(VSM) techniques.The adsorbent possesses the magnetic properties of Fe3O4 nanoparticles that allow them easily to be separated by an external magnetic field.They also have the high specific surface area of graphene oxide which improves adsorption capacity.Desorption conditions,extraction time,amount of adsorbent,salt concentration,and pH were investigated and optimized.Following desorption,the PAHs were quantified by gas chromatography with flame ionization detection(GC-FID).The limits of detection(at an S/N ratio of 3) were achieved from 0.005 to0.1 μg/L with regression coefficients(R2) higher than 0.9954.The relative standard deviations(RSDs) were below 5.8%(intraday) and 6.2%(inter-day),respectively.The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7%and 106.7%(with RSDs of 1.6%to 8.4%,for n = 3).The results indicated that the Fe3O4@SiO2@GO-PEA microspheres had a great promise to extraction of PAHs from different water samples. 展开更多
关键词 Graphene oxide Polycyclic aromatic hydrocarbons Magnetic separation nanoadsorbent Gas chromatography Water samples analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部