Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,...Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.展开更多
Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer...Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer from weak cell-scaffold interactions and insufficient cell organizations due to the limited resolution of the 3D-printed features.Here,composite scaffolds with mechanically-robust frameworks and aligned nanofibrous architectures are presented and hybrid manufactured by combining techniques of 3D printing,electrospinning,and unidirectional freeze-casting.It was found that the composite scaffolds provided volume-stable environments and enabled directed cellular infiltration for tissue regeneration.In particular,the nanofibrous architectures with aligned micropores served as artificial extracellular matrix materials and improved the attachment,proliferation,and infiltration of cells.The proposed scaffolds can also support the adipogenic maturation of adipose-derived stem cells(ADSCs)in vitro.Moreover,the composite scaffolds were found to guide directed tissue infiltration and promote nearby neovascularization when implanted into a subcutaneous model of rats,and the addition of ADSCs further enhanced their adipogenic potential.The presented hybrid manufacturing strategy might provide a promising way to produce additional topological cues within 3D-printed scaffolds for better tissue regeneration.展开更多
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ...Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration.展开更多
One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal charact...One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal characteristics.Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures,manageable dimensions,and modifiable properties,which hold great potential in many cutting-edge applications including aerospace,nanodevice,and energy.In this review,substantial advances in the structural design,controllable synthesis,and multifunctional applications of electrospun SNFs are highlighted.We begin with a brief introduction to the fundamental principles,available raw materials,and typical apparatus of electrospun SNFs.We then discuss the strategies for preparing SNFs with diverse structures in detail,especially stressing the newly emerging three-dimensional SiO_(2) nanofibrous aerogels.We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement.In addition,we showcase recent applications enabled by electrospun SNFs,with particular emphasis on physical protection,health care and water treatment.In the end,we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.展开更多
In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous mi...In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse(grains diameter of 240 nm) and fine(grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800?C, the tensile strength decreased slightly but still held high values(1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.展开更多
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To imp...Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.展开更多
Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-...Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-loderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase. Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membrane exhibits an activity retention of 93%, which is an exciting improvement. This improvement is attributed to both the strong catalase-porphyrin affinity and the possible facilitated electron transfer induced by the porphyrin as evidenced by quartz crystal microbalance (QCM) and fluorescence spectroscopy studies.展开更多
Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength fo...Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength for practical applications.Herein,a novel mixed solvent was used to prepare next-generation high-strength Col/CS nanofibrous membrane.Meanwhile,the optimal Col to CS weight ratio was investigated as well.The asproduced membrane was examined by scanning electron microscopy(SEM),attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC),and XF-1A tester to study its morphological,chemical,thermal and mechanical properties.The preliminary results demonstrated that the mechanical properties of Col/CS nanofibrous membranes were enhanced substantially with the increase of CS weight ratios from 0 to 90%and the optimal Col to CS weight ratio was determined to be 1∶1.A promising way was presented to fabricate Col/CS electrospun nanofibrous membrane with sufficient mechanical strength for practical wound dressing applications.展开更多
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T...Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.展开更多
The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal fu...The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney.展开更多
Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nan...Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering.展开更多
Introductons The biophysical organization of extracellular matrix (ECM) plays an important role in tissue morphogenesis,remodeling and functions. In many types of tissues,e. g. ,blood vessel,nerve,heart,muscle,tendon ...Introductons The biophysical organization of extracellular matrix (ECM) plays an important role in tissue morphogenesis,remodeling and functions. In many types of tissues,e. g. ,blood vessel,nerve,heart,muscle,tendon and ligament,ECM has aniso-展开更多
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene gly...Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds.展开更多
The absorption of sound in the low frequency range is problematic with fibrous materials made up of coarser fibers. In that case, highly efficient sound absorption materials from much finer fibers must be developed. A...The absorption of sound in the low frequency range is problematic with fibrous materials made up of coarser fibers. In that case, highly efficient sound absorption materials from much finer fibers must be developed. Although studies on the acoustic properties of conventional textile materials started in the nineties, analysis of the acoustic properties of the electrospun nanofibrous membranes is a novel subject. Nanofibrous membranes can improve acoustic insulation products by increasing the sound absorption coefficient, reducing material thickness, and decreasing material weight offering a competitive advantage. The purpose of this study is to analyze the effect of fiber diameter on the acoustic behavior of nanofibrous membranes.展开更多
Due to their unique structural features, electrospun membranes have gained considerable attention for use in applications where quality of depth filtration is a dominant performance factor. To elucidate the depth filt...Due to their unique structural features, electrospun membranes have gained considerable attention for use in applications where quality of depth filtration is a dominant performance factor. To elucidate the depth filtration phenomena it is important to quantify the intrinsic structural properties independent from the dynamics of transport media. Several methods have been proposed for structural characterization of such membranes. However, these methods do not meet the requirement for the quantification of intrinsic structural properties in depth filtration. This may be due to the complex influence of transport media dynamics and structural elements in the depth filtration process. In addition, the different morphological architectures of electrospun membranes present obstacles to precise quantification. This paper seeks to quantify the structural characteristics of electrospun membranes by introducing a robust image analysis technique and exploiting it to evaluate the permeation-filtration mechanism. To this end, a nanostructured fibrous network was simulated as an ideal membrane using adaptive local criteria in the image analysis. The reliability of the proposed approach was validated with measurements and comparison of structural characteristics in different morphological conditions. The results were found to be well compatible with empirical observations of perfect membrane structures. This approach, based on optimization of electrospinning parameters, may pave the way for producing optimal membrane structures for boosting the performance of electrospun membranes in end-use applications.展开更多
Finite element model (FEM) was used for the study and description of the arising 3D nanofiber structure strain caused by the pressure of the flowing gas. Computer simulation using an adaptive networking through implic...Finite element model (FEM) was used for the study and description of the arising 3D nanofiber structure strain caused by the pressure of the flowing gas. Computer simulation using an adaptive networking through implicit FEM algorithm can be utilized for a significant improvement of the study of anisotropic strain in the deformed 3D nanostructure. The created model is based on the empirical Laplace-Poisson differential equation for the flow, where gas particles are moving with certain kinetic energy. The kinetic energy depends on the speed, time and temperature and affects the resulting strain of 3D nanofiber structure. The simulation results were compared to the results obtained from the image analysis of real samples and showed that this FEM model can determine individual phases of structure strain. The comparison shows that the developed FEM model can be an important tool in the study of the strain in the arising 3D nano- fiber structure and it can provide valuable information for optimization of 3D nanofiber structure production by the electrospinning process.展开更多
Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI e...Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry.The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt /nanofibrous PANI electrode;the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation.The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity,reproducibility and stability.The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine,and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.展开更多
The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for th...The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for the quantitative detection of antibiotics is necessary.In this study,Cerium oxide(CeO_(2))and Ferrosoferric oxide(Fe_(3)O_(4))nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme(CeFe-NCMzyme)with a porous structure,high surface area,and N-doped carbon material properties,leading to a considerable enhancement of the peroxidase(POD)-like activity compared with that of the CeO_(2)or Fe3O4 nanoparticles alone.The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine(Cys)and subsequently restored by the addition of a quinolone antibiotic(norfloxacin,NOR).Therefore,CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an“On-Off”model of POD-like activity.The sensor possessed a wide linear range of 0.05–20.0μM(R^(2)=0.9910)with a detection limit of 35.70 nM.Furthermore,a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis.With the use of the POCT platform,a linear range of 0.1–20.0μM and a detection limit of 54.10 nM were obtained.The spiked recoveries in the water samples were ranged from 97.73%to 102.01%,and the sensor exhibited good accuracy and acceptable reliability.This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples,particularly in resource-constrained settings.展开更多
Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature rang...Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature range.However,it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature.Here,we propose a flexible regulation engineering of titanium nitride(TiN)nanofibrous membranes(NMs,TNMs),which could be distributed uniformly in the polydimethylsiloxane(PDMS)matrix and contributed to the formation of abundant local conductive networks,generating the local conductive loss and enhancing the loss ability of EMWs.Moreover,when the TNMs are used as functional units and dispersed in the matrix,the corresponding composites exhibit an outstanding anti-reflection effect on microwaves.As hoped,under the precondition of good impedance matching,local conductive loss and polarization loss together improve the loss capacity at room temperature,and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature.Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering,the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K.This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection,but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.展开更多
Air pollution,including airborne pathogens and particulate matter(PM),has become a prominent issue affecting human health and safety.Conventional air filtration materials do not meet the requirements for efficient PM ...Air pollution,including airborne pathogens and particulate matter(PM),has become a prominent issue affecting human health and safety.Conventional air filtration materials do not meet the requirements for efficient PM capture or do not instantly kill pathogens,leading to increased risk of direct/indirect contact transmission and infection due to the accumulation of pathogens during filtration.Electrospun nanofibrous membranes have emerged as a promising platform due to their rich porous structure,finer fiber diameters,good internal connectivity,and the ability to easily incorporate active chemicals for antimicrobial function.In this review,antimicrobial mechanisms of nanofibrous membranes for air filtration and PM capture mechanisms of nanofibers were firstly investigated,and various types of electrospun nanofibrous membranes with different antimicrobial agents for efficient air filtration were described in detail,including organic antimicrobial agents,inorganic antimicrobial agents and metal-organic frameworks.We hope this work could provide a better practical insight for designing novel electrospun nanofibrous membranes with antimicrobial efficacy for efficient air filtration.展开更多
基金support from the University of Tehran and the Iran National Science Foundation(INSF No.97,012,418).
文摘Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.
基金financially supported by the National Key Research and Development Program of China(2018YFA0703003)the National Natural Science Foundation of China (52125501)+2 种基金the Key Research Project of Shaanxi Province (2021LLRH-08,2021GXLH-Z-028)the Program for Innovation Team of Shaanxi Province (2023-CX-TD-17)the Fundamental Research Funds for the Central Universities。
文摘Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer from weak cell-scaffold interactions and insufficient cell organizations due to the limited resolution of the 3D-printed features.Here,composite scaffolds with mechanically-robust frameworks and aligned nanofibrous architectures are presented and hybrid manufactured by combining techniques of 3D printing,electrospinning,and unidirectional freeze-casting.It was found that the composite scaffolds provided volume-stable environments and enabled directed cellular infiltration for tissue regeneration.In particular,the nanofibrous architectures with aligned micropores served as artificial extracellular matrix materials and improved the attachment,proliferation,and infiltration of cells.The proposed scaffolds can also support the adipogenic maturation of adipose-derived stem cells(ADSCs)in vitro.Moreover,the composite scaffolds were found to guide directed tissue infiltration and promote nearby neovascularization when implanted into a subcutaneous model of rats,and the addition of ADSCs further enhanced their adipogenic potential.The presented hybrid manufacturing strategy might provide a promising way to produce additional topological cues within 3D-printed scaffolds for better tissue regeneration.
基金financially supported by Tsinghua University Initiative Scientific Research Program,No.20131089199the National Key Research and Development Program of China,No.2016YFB0700802the National Program on Key Basic Research Project of China(973 Program),No.2012CB518106,2014CB542201
文摘Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration.
基金This work was supported by the National Natural Science Foundation of China(Nos.21961132024,51925302,and 52173055)the Ministry of Science and Technology of China(No.2021YFE0105100)the Fundamental Research Funds for the Central Universities and the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal characteristics.Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures,manageable dimensions,and modifiable properties,which hold great potential in many cutting-edge applications including aerospace,nanodevice,and energy.In this review,substantial advances in the structural design,controllable synthesis,and multifunctional applications of electrospun SNFs are highlighted.We begin with a brief introduction to the fundamental principles,available raw materials,and typical apparatus of electrospun SNFs.We then discuss the strategies for preparing SNFs with diverse structures in detail,especially stressing the newly emerging three-dimensional SiO_(2) nanofibrous aerogels.We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement.In addition,we showcase recent applications enabled by electrospun SNFs,with particular emphasis on physical protection,health care and water treatment.In the end,we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.
基金financially supported by the National Natural Science Foundation of China(No.51271021)Beijing Natural Science Foundation(No.2162025)State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing
文摘In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse(grains diameter of 240 nm) and fine(grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800?C, the tensile strength decreased slightly but still held high values(1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No50625309)the National Postdoctoral Science Foundation of China(No20060400337)
文摘Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.
基金Supported by the National High-Tech Research and Development Program of China(No.2007AA10Z301) the National Natural Science Foundation of China for Distinguished Young Scholars(No.50625309)
文摘Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-loderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase. Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membrane exhibits an activity retention of 93%, which is an exciting improvement. This improvement is attributed to both the strong catalase-porphyrin affinity and the possible facilitated electron transfer induced by the porphyrin as evidenced by quartz crystal microbalance (QCM) and fluorescence spectroscopy studies.
基金Science and Technology Committee of Shanghai Municipality,China(No.14441901600)Fundamental Research Funds for the Central Universities,China(No.16D110119)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength for practical applications.Herein,a novel mixed solvent was used to prepare next-generation high-strength Col/CS nanofibrous membrane.Meanwhile,the optimal Col to CS weight ratio was investigated as well.The asproduced membrane was examined by scanning electron microscopy(SEM),attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC),and XF-1A tester to study its morphological,chemical,thermal and mechanical properties.The preliminary results demonstrated that the mechanical properties of Col/CS nanofibrous membranes were enhanced substantially with the increase of CS weight ratios from 0 to 90%and the optimal Col to CS weight ratio was determined to be 1∶1.A promising way was presented to fabricate Col/CS electrospun nanofibrous membrane with sufficient mechanical strength for practical wound dressing applications.
基金supported by National Basic Research Program of China(973 Program,2014CB542205)Hong Kong RGC grant+2 种基金Hong Kong Health and Medical Research Fundfoundation for Distinguished Young Talents in Higher Education of Guangdong(Yq2013023)the Leading Talents of Guangdong Province(87014002)
文摘Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.
基金supported by the Fundamental Research Funds for the Central Universities(2232020A-04)Natural Science Foundation of Shanghai City(19ZR1401300)。
文摘The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney.
基金"111 Project"Biomedical Textile Materials Science and Technology,China(No.B07024)National Natural Science Foundations of China(No.31070871,No.31271035)+2 种基金National Medical Research Council,China(No.NMRC/1151/2008)Technologies Bureau of Jiaxing City,China(No.MTC2012-006,No.2011A Y1026)Science and Technology Agency of Zhejiang Province,China(No.2012R10012-09)
文摘Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering.
基金supported in part by research grants from TATRC,College of Engineering at Berkeley and National Institute of Health
文摘Introductons The biophysical organization of extracellular matrix (ECM) plays an important role in tissue morphogenesis,remodeling and functions. In many types of tissues,e. g. ,blood vessel,nerve,heart,muscle,tendon and ligament,ECM has aniso-
基金the Independent Design Project of Key Scientific and Technological Innovation Team of Zhejiang Province,China(No.2010R50012-19)the Key Student Research Training Project of Jiaxing University,China(No.851713022)+1 种基金Technology Commission of JiaxingM unicipality Program,China(No.2012AY1030)National Natural Science Foundation of China(No.31271035)
文摘Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds.
文摘The absorption of sound in the low frequency range is problematic with fibrous materials made up of coarser fibers. In that case, highly efficient sound absorption materials from much finer fibers must be developed. Although studies on the acoustic properties of conventional textile materials started in the nineties, analysis of the acoustic properties of the electrospun nanofibrous membranes is a novel subject. Nanofibrous membranes can improve acoustic insulation products by increasing the sound absorption coefficient, reducing material thickness, and decreasing material weight offering a competitive advantage. The purpose of this study is to analyze the effect of fiber diameter on the acoustic behavior of nanofibrous membranes.
文摘Due to their unique structural features, electrospun membranes have gained considerable attention for use in applications where quality of depth filtration is a dominant performance factor. To elucidate the depth filtration phenomena it is important to quantify the intrinsic structural properties independent from the dynamics of transport media. Several methods have been proposed for structural characterization of such membranes. However, these methods do not meet the requirement for the quantification of intrinsic structural properties in depth filtration. This may be due to the complex influence of transport media dynamics and structural elements in the depth filtration process. In addition, the different morphological architectures of electrospun membranes present obstacles to precise quantification. This paper seeks to quantify the structural characteristics of electrospun membranes by introducing a robust image analysis technique and exploiting it to evaluate the permeation-filtration mechanism. To this end, a nanostructured fibrous network was simulated as an ideal membrane using adaptive local criteria in the image analysis. The reliability of the proposed approach was validated with measurements and comparison of structural characteristics in different morphological conditions. The results were found to be well compatible with empirical observations of perfect membrane structures. This approach, based on optimization of electrospinning parameters, may pave the way for producing optimal membrane structures for boosting the performance of electrospun membranes in end-use applications.
基金The Ministry of Industry and Trade of the Czech Republic and Project Development of Research Teams of R&D Projects at the Technical university of Liberec CZ.1.07/2.3.00/30.0024 the project of CREATex (CZ.1.07/2.2.00/28.0321) Europen Social Fund and The Ministry of Education, Youth and Sports of the Czech Republic
文摘Finite element model (FEM) was used for the study and description of the arising 3D nanofiber structure strain caused by the pressure of the flowing gas. Computer simulation using an adaptive networking through implicit FEM algorithm can be utilized for a significant improvement of the study of anisotropic strain in the deformed 3D nanostructure. The created model is based on the empirical Laplace-Poisson differential equation for the flow, where gas particles are moving with certain kinetic energy. The kinetic energy depends on the speed, time and temperature and affects the resulting strain of 3D nanofiber structure. The simulation results were compared to the results obtained from the image analysis of real samples and showed that this FEM model can determine individual phases of structure strain. The comparison shows that the developed FEM model can be an important tool in the study of the strain in the arising 3D nano- fiber structure and it can provide valuable information for optimization of 3D nanofiber structure production by the electrospinning process.
基金Project(20050532008) supported by the PhD. Program Foundation of Ministry of Education of ChinaProject(06JJ4005) supported by the Natural Science Foundation of Hunan Province+1 种基金 Project(20060400874)supported by the Postdoctoral Foundation of China Project supported by the Postdoctoral Foundation of Hunan University
文摘Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy.The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry.The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt /nanofibrous PANI electrode;the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation.The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity,reproducibility and stability.The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine,and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.
基金This work was financially supported by Natural Science Foundation of Jiangxi Province(Grant Nos.:20224ACB203016 and 20224BAB203022)Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.:GJJ2201322)+1 种基金the National Natural Science Foundation of China(Grant Nos.:32060577 and 32360619)Natural Science Foundation for Distinguished Young Scholars of Hunan Province(Gtant No.:2023JJ10099).
文摘The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for the quantitative detection of antibiotics is necessary.In this study,Cerium oxide(CeO_(2))and Ferrosoferric oxide(Fe_(3)O_(4))nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme(CeFe-NCMzyme)with a porous structure,high surface area,and N-doped carbon material properties,leading to a considerable enhancement of the peroxidase(POD)-like activity compared with that of the CeO_(2)or Fe3O4 nanoparticles alone.The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine(Cys)and subsequently restored by the addition of a quinolone antibiotic(norfloxacin,NOR).Therefore,CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an“On-Off”model of POD-like activity.The sensor possessed a wide linear range of 0.05–20.0μM(R^(2)=0.9910)with a detection limit of 35.70 nM.Furthermore,a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis.With the use of the POCT platform,a linear range of 0.1–20.0μM and a detection limit of 54.10 nM were obtained.The spiked recoveries in the water samples were ranged from 97.73%to 102.01%,and the sensor exhibited good accuracy and acceptable reliability.This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples,particularly in resource-constrained settings.
基金support of the National Natural Science Foundation of China(Nos.22305066 and U1704253).
文摘Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature range.However,it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature.Here,we propose a flexible regulation engineering of titanium nitride(TiN)nanofibrous membranes(NMs,TNMs),which could be distributed uniformly in the polydimethylsiloxane(PDMS)matrix and contributed to the formation of abundant local conductive networks,generating the local conductive loss and enhancing the loss ability of EMWs.Moreover,when the TNMs are used as functional units and dispersed in the matrix,the corresponding composites exhibit an outstanding anti-reflection effect on microwaves.As hoped,under the precondition of good impedance matching,local conductive loss and polarization loss together improve the loss capacity at room temperature,and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature.Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering,the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K.This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection,but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.
基金financial support from the Fundamental Research Funds for the Central Universities of China(No.DUT22YG237)Guidance program of Dalian Life and Health field(No.2022ZXYG29)。
文摘Air pollution,including airborne pathogens and particulate matter(PM),has become a prominent issue affecting human health and safety.Conventional air filtration materials do not meet the requirements for efficient PM capture or do not instantly kill pathogens,leading to increased risk of direct/indirect contact transmission and infection due to the accumulation of pathogens during filtration.Electrospun nanofibrous membranes have emerged as a promising platform due to their rich porous structure,finer fiber diameters,good internal connectivity,and the ability to easily incorporate active chemicals for antimicrobial function.In this review,antimicrobial mechanisms of nanofibrous membranes for air filtration and PM capture mechanisms of nanofibers were firstly investigated,and various types of electrospun nanofibrous membranes with different antimicrobial agents for efficient air filtration were described in detail,including organic antimicrobial agents,inorganic antimicrobial agents and metal-organic frameworks.We hope this work could provide a better practical insight for designing novel electrospun nanofibrous membranes with antimicrobial efficacy for efficient air filtration.