期刊文献+
共找到269篇文章
< 1 2 14 >
每页显示 20 50 100
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
1
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 nanoindentation twin boundary plastic deformation molecular dynamics simulation
下载PDF
Mechanical properties of tungsten nanowhiskers characterized by nanoindentation 被引量:2
2
作者 侯丽珍 王世良 +2 位作者 陈国良 贺跃辉 谢亚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2323-2328,共6页
The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoin... The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoindentation results show that tungsten nanowhiskers exhibit a hardness of (6.2±1.7) GPa and an elastic modulus of (225±20) GPa. According to the comparative test results, the tungsten nanowhiskers possess a comparable hardness to tungsten microwhiskers, and an hardness increase of 35% to the bulk single-crystal tungsten. The increase in the hardness of whiskers is attributed to the lacking of dislocation avalanche observed in the bulk single-crystal tungsten. The measured modulus is about 80% that of the tungsten microwhiskers, which can be contributed to the size effects of the nanowhiskers and the substrate effects in the nanoindentation test. 展开更多
关键词 TUNGSTEN NANOWHISKERS mechanical properties nanoindentation
下载PDF
Elastic modulus determination at different levels of periodontal ligament in nanoindentation 被引量:1
3
作者 杨宇 汤文成 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期33-38,共6页
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim... In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL. 展开更多
关键词 periodontal ligament PDL) elastic modulus nanoindentation material properties CANINE
下载PDF
Creep characteristics of coal and rock investigated by nanoindentation 被引量:13
4
作者 Changlun Sun Guichen Li +2 位作者 Mohamed Elgharib Gomah Jiahui Xu Yuantian Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期769-776,共8页
In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight in... In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight into their creep characteristics,an efficient and robust researching technique,nanoindentation,was applied to investigate the creep performances of coal and rock samples obtained from two coal mines in the east of China.Creep characteristics were reflected by evaluating the curves of creep depth versus creep time of nanoindentation tests during the load-holding period at the peak load of 30 mN.These curves can be divided into two stages:transient stage and steady stage;and the time of load-holding period of 5 s,which is the dividing point between two stages,can efficiently avoid the influence of creep displacement on the unloading curves.The exponential function can perfectly fit creep curves and Kelvin model can be used to calculate the rheological parameters of coal and rock samples.Calculated results yield values for the creep modulus and viscosity terms of coal and rock.This study also settled a particular emphasis on the selection of the positions of indentations to obtain the rheological properties of mineralogical constituents in heterogonous coal and rock samples and their elastic aftereffect. 展开更多
关键词 Coal and rock nanoindentation CREEP Heterogeneous properties Elastic aftereffect
下载PDF
Factors impacting nanoindentation testing results of the cuticle of dung beetle Copris ochus Motschulsky 被引量:7
5
作者 TONG Jin , SUN Ji-yu , CHEN Dong-hui , ZHANG Shu-jun 1 1 1 2 1. Key Laboratory for Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China 2. Department of Multi-media and Computing, University of Gloucestershire, Cheltenham, The Park, GL50 2QF, UK. 1 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第4期221-230,共10页
The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg ... The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg to hold and impel dung ball. Its two foreleges as digging legs are developed. The factors impacting the nanoindentation testing results of the femur cuticle of forelegs of dung beetle Copris ochus Motschulsky were examined. The nanomechanical test instrument used for the tests was Hysitron nanomechanical system. The results shown that the holding time and loading time are important factors im- pacting the accuracy of such indentation properties as reduced modulus (Er) and the harness ( H ) of the femur cuticle of the forelegs of dung beetle Copris ochus Motschulsky in nanoscale. There exists a threshold holding time of 20 s for the reduced modulus of the femur cuticle. The tests of nanoindentation creep property and the regression analysis of relationship between the depth increment at the maximum load and the time further confirmed the correction of the above threshold holding time. There exist visco-elastic-plastic behaviour and creep phenomenon in the femur cuticle during indenting. Its creep property during the holding procedure at maximum load can be regressed by a general logarithmic equation. The equation fitted by the testing data is ? h = 54.83452 ln(0.00723t +1.00486), where, ? h is the depth increment at the maximum load and t is the time. 展开更多
关键词 INSECT dung beetle cuticle nanoindentation holding time loading time creep 1
下载PDF
Determination of Elastoplastic Mechanical Properties of the Weld and Heat Affected Zone Metals in Tailor-Welded Blanks by Nanoindentation Test 被引量:7
6
作者 MA Xiangdong GUAN Yingping YANG Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期911-918,共8页
The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanica... The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy. 展开更多
关键词 tailor-welded blanks elastoplastic mechanical properties nanoindentation test Erichsen cupping test
下载PDF
The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation 被引量:6
7
作者 Li Xiaoquan Hao Benxing +2 位作者 Chen Yixin Yun Yeling Yang Zonghui 《China Welding》 EI CAS 2019年第2期29-34,共6页
To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected ... To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint. 展开更多
关键词 MICROSCOPIC mechanical performance nanoindentation NICKEL based alloy WELDED joint
下载PDF
Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation 被引量:5
8
作者 Ji-yu Sun Jin Tong 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期11-17,共7页
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu... The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one. 展开更多
关键词 biomimetics BIONICS BIOMATERIALS nanoindentation laminated structure fracture toughness
下载PDF
Plastic characterization of metals by combining nanoindentation test and finite element simulation 被引量:5
9
《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2368-2373,共6页
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo... Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy. 展开更多
关键词 nanoindentation finite element simulation representative stress representative stain initial yield stress
下载PDF
Mechanical properties of 3D carbon/carbon composites by nanoindentation technique 被引量:5
10
作者 WEI Li-ming ZHANG Yue +2 位作者 XU Cheng-hai QI Fei MENG Song-he 《Journal of Central South University》 SCIE EI CAS 2012年第1期36-40,共5页
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro... Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions. 展开更多
关键词 C/C composites mechanical properties nanoindentation MICROSTRUCTURE
下载PDF
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
11
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial Hierarchical structure - Mechan-ical property nanoindentation size effect Trans-scalemechanics
下载PDF
Nanoindentation tests on single crystal copper thin film with an AFM 被引量:4
12
作者 霍德鸿 梁迎春 +1 位作者 程凯 董申 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第4期408-412,共5页
Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor de... Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as (67.0±(6.9) GPa) on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect. 展开更多
关键词 nanoindentation atomic force microscope thin film mechanical property HARDNESS elastic modulus
下载PDF
Influence of sample preparation on nanoindentation results of twinninginduced plasticity steel 被引量:3
13
作者 Jiali Zhang Stefan Zaefferer 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期877-887,共11页
Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because o... Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because of the complex stress-strain field and the small scale of the deformation under the nanoindenter,the results can be easily influenced by artifacts induced during sample preparation.In this work,a systematic study was conducted to better understand the influence of sample preparation methods on the nanoindentation results of ductile metals.All experiments were conducted on a steel(Fe-22Mn-0.65C,wt%)with twinning-induced plasticity(TWIP),which was selected for its large grain size and sensitivity to different surface preparation methods.By grouping the results obtained from each nanoindent,chemical polishing was found to be the best sample preparation method with respect to the resulting mechanical properties of the material.In contrast,the presence of a deformation layer left by mechanical polishing and surface damage induced by focused ion beam(FIB)scanning were confirmed by the dislocation-nucleation-induced pop-in events of nanoindentation. 展开更多
关键词 TWIP steels nanoindentation mechanical polishing chemical polishing POP-IN
下载PDF
Elastic-plastic properties of thin film on elastic-plastic substrates characterized by nanoindentation test 被引量:3
14
作者 蒋丽梅 周益春 黄勇力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2345-2349,共5页
To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data... To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice. 展开更多
关键词 elastic-plastic thin film nanoindentation test dimensionless analysis finite element analysis
下载PDF
Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation 被引量:3
15
作者 Muhammad Imran Fayyaz Hussain +1 位作者 Muhammad Rashid S.A.Ahmad 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期389-395,共7页
In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic p... In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic potentials including the many-body potential embedded atom method (EAM), and two-body morse potential. To simulate the in- dentation process, a spherical indenter (diameter = 80A, 1A=0.1 nm) is chosen. The results show that the mechanical behaviour of a monolithic Ni is not affected by crystalline orientation. To elucidate the effect of a heterogeneous interface, three bilayer interface systems are constructed, namely Ni(100)/Cu(111), Ni(110)/Cu(111), and Ni(111)/Cu(111). The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with the smaller mismatch between the specified crystal planes is proved to be harder and vice versa. To describe the relationship between film thickness and interface effect, we choose various values of film thickness ranging from 20 A to 50 A to perform the nanoindentation experiment. It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip. It is shown that with the increase in film thickness, the mechanical behaviour of the film shifts more toward that of monolithic material. 展开更多
关键词 nanoindentation BILAYER molecular dynamics thin film
下载PDF
Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China 被引量:6
16
作者 SHI Xian JIANG Shu +4 位作者 LU Shuangfang HE Zhiliang LI Dongjie WANG Zhixuan XIAO Dianshi 《Petroleum Exploration and Development》 2019年第1期163-172,共10页
The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoin... The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoindentation measurements. With the help of field emission scanning electron microscope(FESEM) and energy dispersive X-ray fluorescence spectroscopy(EDS), the indentation morphology and mineral composition in indentation area were quantitatively analyzed. According to mechanical strength classification, a micromechanical model with three components was introduced and the Mori-Tanaka model was used to upscale mechanical parameters from nano-scale to centimeter-size scale, which were further compared with uniaxial compression results. The experimental results show that there is a positive linear correlation between Young's modulus and hardness and between the Young's modulus and the fracture toughness under nano-scale; the Young's modulus, hardness and fracture toughness perpendicular to the bedding are slightly lower than those parallel with the bedding. According to data statistics, the mechanical properties at the nano-scale follow Weibull distribution feature and the dispersion degree of hardness results is the highest, which is mainly due to shale anisotropy and nanoindentation projection uncertainty. Comparing the results from nanoindentation test, with those from upscaling model and uniaxial compression test shows that the mechanical parameters at the nano-scale are higher than those from upscaling model and uniaxial compression test, which proves mechanical parameters at different scales have differences. It's because the larger the core, the more pores and internal weakness it contains, the less accurate the interpreted results of mechanical parameters will be. 展开更多
关键词 nanoindentation ROCK MECHANICS Longmaxi FORMATION SHALE Weibull distribution Mori-Tanaka model
下载PDF
Nanomechanical behaviors of (110) and (111) CdZnTe crystals investigated by nanoindentation 被引量:2
17
作者 LI Yan KANG Renke +2 位作者 GAO Hang WANG Jinghe LANG Yanjua 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期570-575,共6页
The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the ... The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal. 展开更多
关键词 nanomechanics ANISOTROPY nanoindentation CDZNTE
下载PDF
Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation 被引量:2
18
作者 Zhaoyang Ma Chengpeng Zhang +1 位作者 Ranjith Pathegama Gamage Guanglei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期283-294,共12页
The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,thes... The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,these tests are expensive and time-consuming.Nanoindentation creep tests,as an alternative method,can be performed to investigate the mechanical and viscoelastic properties of granite samples.In this study,the reduced Young’s modulus,hardness,fracture toughness,creep strain rate,stress exponent,activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results.It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift,and then it decreased slowly.The stress exponent values obtained were in the range from 4.5 to 22.9,which indicates that dislocation climb is the creep deformation mechanism.In addition,fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties.Last but not least,both three-element Voigt model and Burgers model fit the nanoindentation creep curves well.This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a microscale perspective,which is of great significance to the understanding of localized deformation processes of rocks. 展开更多
关键词 nanoindentation GRANITE Time-dependent creep Stress exponent Strain rate sensitivity Fracture toughness
下载PDF
NANOINDENTATION OF THIN-FILM-SUBSTRATE SYSTEM DETERMINATION OF FILM HARDNESS AND YOUNG'S MODULUS 被引量:2
19
作者 陈少华 刘磊 王自强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期383-392,共10页
In the present paper,the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models.Aluminum film and two kinds of substrates,i.e.glass and si... In the present paper,the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models.Aluminum film and two kinds of substrates,i.e.glass and silicon,are studied.Nanoindentation XP Ⅱ and continuous stiffness mode are used during the experiments.In order to avoid the influence of the Oliver and Pharr method used in the experiments,the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption.The volume fraction model(CZ model)proposed by Fabes et al.(1992)is used and modified to analyze the measured hardness.The method proposed by Doerner and Nix(DN formula)(1986)is modified to analyze the measured Young's modulus.Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature,which include the results of two kinds of systems,i.e.,a soft film on a hard substrate and a hard film on a soft substrate.In the modified CZ model,the indentation influence angle,(?), is considered as a relevant physical parameter,which embodies the effects of the indenter tip radius, pile-up or sink-in phenomena and deformation of film and substrate. 展开更多
关键词 nanoindentation HARDNESS Young's modulus film-substrate system
下载PDF
Investigation of point defect evolution and Voronoi cluster analysis for magnesium during nanoindentation 被引量:2
20
作者 Pragyan Goswami Snehanshu Pal Manoj Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1029-1042,共14页
The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading wher... The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading where the load-bearing capacity and change in the structural configuration are studied on the basal(Z-direction)and two prismatic planes(X-and Y-directions)with varying indenter velocities.The investigation of structural evolution is done using atomic displacement analyses to measure the net magnitude of displacement,atomic strain analyses to evaluate the shear strain developed in the process,and Wigner-Seitz defect analyses to calculate the total vacancies at varied timesteps.Furthermore,Voronoi analyses are done when indented on the basal plane to identify the cluster distribution at different planar depths of the specimen.From the analyses,it has been observed that the load-bearing capacity of the specimen varies with the indentation velocity and the direction of indentation on the specimen.Additionally,it is seen that the observed shear and total atomic displacement in the Z-direction is the least in comparison to the other two axes.The partial dislocation 1/3<-12-10>is seen to be majorly present and the population of dislocation loops is more abundant for lower indenter velocities.Furthermore,clusters<0,4,4,6>and<0,6,0,8>are the major indices developed during nanoindentation on the basal plane where they exhibit symmetrical distribution as observed from the Z-direction. 展开更多
关键词 MAGNESIUM Molecular dynamics nanoindentation Voronoi analysis Wigner-Seitz defect analysis
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部