We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine func...We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.展开更多
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and...Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.展开更多
BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a w...BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.展开更多
Nonalcoholic fatty liver disease(NAFLD)is the most prevalent type of chronic liver disease.However,the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies.Several studies...Nonalcoholic fatty liver disease(NAFLD)is the most prevalent type of chronic liver disease.However,the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies.Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoe-tiology and suggest functional therapeutic and diagnostic options.Pyroptosis,ferroptosis,and necroptosis are the main subtypes of non-apoptotic regulated cell deaths(RCDs),each of which represents particular characteristics.Considering the complexity of the findings,the present study aimed to review these types of RCDs and their contribution to NAFLD progression,and subsequently discuss in detail the role of necroptosis in the pathoetiology,diagnosis,and treatment of the disease.The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer,hence it has potential in diagnostic and therapeutic approaches.Nevertheless,further studies are necessary.展开更多
Digestive system diseases refer to organic and functional disorders of the digestive system,which are prone to recurrence and frequently accompanied by multiple complications.Necroptosis is a regulated mode of cell de...Digestive system diseases refer to organic and functional disorders of the digestive system,which are prone to recurrence and frequently accompanied by multiple complications.Necroptosis is a regulated mode of cell death mediated by death receptors,dependent on receptor protein activation,and could be specifically inhibited by necrostatin-1.Necroptosis is involved in pathological and physiological processes of various diseases,and plays an important role in the growth and development of organisms and the homeostasis of organ tissues.This paper reviewed the research advancement of necroptosis in digestive system disorders,and discussed the relationship between necroptosis and digestive system diseases,aiming to provide theoretical basis for the cure of these diseases.展开更多
Necroptosis is a newly found type of programmed cell death.It is elicited by death receptor ligands under the condition of apoptotic inhibition,and can be specifically blocked by necrostatin-1,a small-molecule compoun...Necroptosis is a newly found type of programmed cell death.It is elicited by death receptor ligands under the condition of apoptotic inhibition,and can be specifically blocked by necrostatin-1,a small-molecule compound.The pathway of necroptosis starts from the activation of death receptors by death receptor ligands,and is relayed in turn with aggregation and activation of RIP1 and RIP3,activation of energy metabolism-related enzymes including glycogen phosphorylase,glutamate-ammonia ligase as well as glutamate dehydrogenase 1.The process increases the substrates of tricarboxylic acid cycle,enhances the mitochondria respiratory chain,and induces excessive production of OFR.OFR destroys the cellular membranes,resulting in cease of ATP production and leakage of lysoenzymes.Consequently,cell necrosis happens. Necroptosis may be one of the main types of cell necrosis in diseases.Necroptosis and apoptosis convert to each other.Necroptosis may be important to cure of two kinds of diseases.One involves acute critical diseases such as acute ischemia,acute inflammation and acute organ failure,etc.The other includes malignant tumors and virus infections.Prevention from necroptosis is beneficial to the therapy for the former.On the contrary,promotion to necroptosis is beneficial to that for the latter.Collectively,the findings of necroptosis make modulation of necrosis possible.The research on necroptosis will certainly promote our understanding in cell death and disease mechanisms as well as clinical therapy.展开更多
目的:探讨活性氧自由基(ROS)在肾小管上皮细胞necroptosis中的作用。方法:构建肾小管上皮细胞HK-2细胞necroptosis模型,检测其ROS升高程度。并使用NADPH酶抑制剂Apocynin抑制HK-2细胞necroptosis模型中ROS的生成,通过流式细胞计数及检测...目的:探讨活性氧自由基(ROS)在肾小管上皮细胞necroptosis中的作用。方法:构建肾小管上皮细胞HK-2细胞necroptosis模型,检测其ROS升高程度。并使用NADPH酶抑制剂Apocynin抑制HK-2细胞necroptosis模型中ROS的生成,通过流式细胞计数及检测necroptosis的关键蛋白观察HK-2细胞necroptosis的变化。结果:使用肿瘤坏死因子α、苄氧羰酰-缬氨酰-丙氨酰-天冬氨酰-氟甲基酮及抗霉素A成功建立了HK-2细胞necroptosis模型,并观察到HK-2细胞发生necroptosis时ROS显著升高(43.29±2.49 vs 25.90±1.27,P<0.001),而使用necrostatin-1抑制necroptosis后ROS生成受到抑制(35.58±1.08 vs 43.29±2.49,P=0.002)。当对necroptosis模型使用Apocynin干预时,HK-2细胞ROS明显下降(30.71±2.82 vs 43.29±2.49,P<0.001),并且流式细胞计数结果显示坏死细胞比例减少(2.00%±0.30%vs 6.99%±2.79%,P<0.001),同时受体相关蛋白3和混合系列蛋白激酶样结构域的磷酸化水平降低。结论:ROS参与了HK-2细胞的necroptosis,并且通过抑制ROS的生成可减少necroptosis发生,提高损伤状态下HK-2细胞存活率,减轻急性肾小管坏死。展开更多
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all...Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all the components of PANoptosis to be regulated simultaneously.PANoptosis provides a new way to study the regulation of cell death,in that different types of cell death may be regulated at the same time.To test whether PANoptosis exists in diseases other than infectious diseases,we chose cerebral ischemia/reperfusion injury as the research model,collected articles researching cerebral ischemia/reperfusion from three major databases,obtained the original research data from these articles by bibliometrics,data mining and other methods,then integrated and analyzed these data.We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion.In the cell model simulating ischemic brain injury,pyroptosis,apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons.Pyroptosis,apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury.This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.展开更多
Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK) associated with the tumor necrosis fact...Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK) associated with the tumor necrosis factor-alpha (TNF-a)/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and al- leviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar con- centrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/ kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-u. However, subsequent lower doses (5 mg/kg/day) failed to sustain this neuroprotective effect after 4 days. Dabrafenib bl ocked lipopolysaccharides-induced activation of TNF-ct in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-ct-induced necroptotic pathway after ischemic brain injury. Since Dab- rafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.展开更多
There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by env...There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.展开更多
Methamphetamine is one of the most prevalent drugs abused in the world.Methamphetamine abusers usually present with hyperpyrexia (39℃),hallucination and other psychiatric symptoms.However,the detailed mechanism under...Methamphetamine is one of the most prevalent drugs abused in the world.Methamphetamine abusers usually present with hyperpyrexia (39℃),hallucination and other psychiatric symptoms.However,the detailed mechanism underlying its neurotoxic action remains elusive.This study investigated the effects of methamphetamine + 39℃ on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats.Primary cortex neurons were exposed to 1 mM methamphetamine + 39℃.Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39℃ triggered obvious necrosis-like death in cultured primary cortical neurons,which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially.Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39℃ for 3 hours.After pre-treatment with RIP3 inhibitor GSK’872,propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased;RIP3 and MLKL protein expression significantly decreased.Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse.Taken together,the above results suggest that methamphetamine + 39℃ can induce RIP3/MLKL regulated necroptosis,thereby resulting in neurotoxicity.The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University,China (approval numbers: 2017-S026 and 2017-S033) on March 7,2017.展开更多
Necroptosis is a non-apoptotic programmed cell death pathway,which causes necrosislike morphologic changes and triggers inflammation in the surrounding tissues.Accumulating evidence has demonstrated that necroptosis i...Necroptosis is a non-apoptotic programmed cell death pathway,which causes necrosislike morphologic changes and triggers inflammation in the surrounding tissues.Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases.However,the exact molecular pathways linking them remain unknown.Herein,this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases,including atherosclerosis,cardiac ischemia-reperfusion injury,cardiac hypertrophy,dilated cardiomyopathy and myocardial infarction,and may shed light on the diagnosis and treatment of these diseases.展开更多
Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ�...Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ’s physiological function. For long, only apoptosis was considered as a sole form of programmed cell death. Recently necroptosis, a RIP1/RIP3-dependent programmed cell death, has been identified as an apoptotic backup cell death mechanism with necrotic morphology. The evidences of necroptosis and protective effects achieved by blocking necroptosis have been extensively reported in recent past. However, only a few studies reported the evidence of necroptosis and protective effects achieved by inhibiting necroptosis in liver related disease conditions. Although the number of necroptosis initiators is increasing; however, interestingly, it is still unclear that what actually triggers necroptosis in different liver diseases or if there is always a different necroptosis initiator in each specific disease condition followed by specific downstream signaling molecules. Understanding the precise mechanism of necroptosis as well as counteracting other cell death pathways in liver diseases could provide a useful insight towards achieving extensive therapeutic significance. By targeting necroptosis and/or other parallel death pathways, a significant cell loss and thus a decrement in an organ’s physiological function can be prevented.展开更多
BACKGROUND Receptor interacting protein kinase 1(RIPK1)-mediated cell death,including apoptosis and necroptosis,belongs to programmed cell death.It has been reported that RIPK1-mediated necroptosis exists in lesions o...BACKGROUND Receptor interacting protein kinase 1(RIPK1)-mediated cell death,including apoptosis and necroptosis,belongs to programmed cell death.It has been reported that RIPK1-mediated necroptosis exists in lesions of cerebral hemorrhage(CH).Electroacupuncture,a treatment derived from traditional Chinese medicine,could improve neurological impairment in patients with brain injury.AIM To investigate the protective role of cross electro-nape acupuncture(CENA)in CH,and clarify the potential mechanism.METHODS CH rat models were established,and CENA was applied to the experimental rats.Neurological functions and encephaledema were then measured.Necrotic cells in the brain of rats with CH were evaluated by propidium iodide staining.Necroptosis was assessed by immunofluorescence.Activation of the necroptosisrelated pathway was detected by western blot.Extraction of brain tissue,cerebrospinal fluid and serum samples was conducted to measure the expression and secretion of inflammatory cytokines by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.RESULTS The necroptotic marker p-MLKL was detectable in the brains of rats with CH.Next,we found that CENA could ameliorate neurological functions in rat models of CH.Moreover,the upregulation of RIPK1-mediated necroptosis-related molecules in the brains of rats with CH were inhibited by CENA.Further investigation revealed that CENA partially blocked the interaction between RIPK1 and RIPK3.Finally,in vivo assays showed that CENA decreased the expression of the inflammatory cytokines tumor necrosis factor-α,interleukin-6 and interleukin-8 in CH rat models.CONCLUSION These findings revealed that CENA exerts a protective role in CH models by inhibiting RIPK1-mediated necroptosis.展开更多
Guo-Qiang XuFor a long time, it was believed that apoptosis and necrosis were the main pathways for cell death, but a growing body of research has shown that there are other pathways. Among these, necroptosis, a regul...Guo-Qiang XuFor a long time, it was believed that apoptosis and necrosis were the main pathways for cell death, but a growing body of research has shown that there are other pathways. Among these, necroptosis, a regulatory caspase-independent, programmed cell death pathway, is supposed to be of importance in the pathogenesis of many diseases. The mechanism of regulating, in-ducing and blocking necroptosis is a complex process that involves expression and regulation of a series of molecules including receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase like protein. By blocking or downregulating expression of key molecules in the necroptotic pathway, intestinal inflammation can be affected to some extent. In this paper, we introduce the concept of necroptosis, its main pathway, and its impact on the pathogenesis ofinfammatory bowel disease (IBD) and other intestinal diseases, to explore new drug targets for intestinal diseases, including IBD.展开更多
基金supported by the National Natural Science Foundation of China,No.81801907(to NC)Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research,No.ZDSYS20230626091402006(to NC)+2 种基金Sanming Project of Medicine in Shenzhen,No.SZSM201911002(to SL)Foundation of Shenzhen Committee for Science and Technology Innovation,Nos.JCYJ20230807110310021(to NC),JCYJ20230807110259002(to JL)Science and Technology Program of Guangzhou,No.2024A04J4716(to TL)。
文摘We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
基金supported by the National Natural Science Foundation of China,No.82101461(to ZL)。
文摘Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
基金Supported by the Natural Science Foundation of Liaoning Province,No.2022-MS-330and Key Projects in Liaoning Province,No.2020JH2/10300046.
文摘BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer.OSW-1,which is derived from the bulbs of Ornithogalum saundersiae Baker,exerts a wide range of pharmaco-logical effects.AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer(CRC)cells,thereby expanding its range of clinical applications.METHODS We performed a sequence of functional experiments,including Cell Counting Kit-8 assays and flow cytometry analysis,to assess the inhibitory effect of OSW-1 on CRC cells.We utilized quantitative proteomics,employing tandem mass tag label-ing combined with liquid chromatography-tandem mass spectrometry,to analyze changes in protein expression.Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins.Transmission electron microscopy(TEM)and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis.Finally,western blotting,siRNA experiments,and immunoprecipitation were employed to evaluate protein interactions within CRC cells.RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells,and this effect was accompanied by a necroptosis-like morphology that was observable via TEM.OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway.Furthermore,the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1.CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway,and that this effect is mediated by the RIPK1-p62/SQSTM1 complex,in CRC cells.These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.
文摘Nonalcoholic fatty liver disease(NAFLD)is the most prevalent type of chronic liver disease.However,the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies.Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoe-tiology and suggest functional therapeutic and diagnostic options.Pyroptosis,ferroptosis,and necroptosis are the main subtypes of non-apoptotic regulated cell deaths(RCDs),each of which represents particular characteristics.Considering the complexity of the findings,the present study aimed to review these types of RCDs and their contribution to NAFLD progression,and subsequently discuss in detail the role of necroptosis in the pathoetiology,diagnosis,and treatment of the disease.The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer,hence it has potential in diagnostic and therapeutic approaches.Nevertheless,further studies are necessary.
基金Supported by Innovation Project of Guangxi Graduate Education(YCSW2023432).
文摘Digestive system diseases refer to organic and functional disorders of the digestive system,which are prone to recurrence and frequently accompanied by multiple complications.Necroptosis is a regulated mode of cell death mediated by death receptors,dependent on receptor protein activation,and could be specifically inhibited by necrostatin-1.Necroptosis is involved in pathological and physiological processes of various diseases,and plays an important role in the growth and development of organisms and the homeostasis of organ tissues.This paper reviewed the research advancement of necroptosis in digestive system disorders,and discussed the relationship between necroptosis and digestive system diseases,aiming to provide theoretical basis for the cure of these diseases.
文摘Necroptosis is a newly found type of programmed cell death.It is elicited by death receptor ligands under the condition of apoptotic inhibition,and can be specifically blocked by necrostatin-1,a small-molecule compound.The pathway of necroptosis starts from the activation of death receptors by death receptor ligands,and is relayed in turn with aggregation and activation of RIP1 and RIP3,activation of energy metabolism-related enzymes including glycogen phosphorylase,glutamate-ammonia ligase as well as glutamate dehydrogenase 1.The process increases the substrates of tricarboxylic acid cycle,enhances the mitochondria respiratory chain,and induces excessive production of OFR.OFR destroys the cellular membranes,resulting in cease of ATP production and leakage of lysoenzymes.Consequently,cell necrosis happens. Necroptosis may be one of the main types of cell necrosis in diseases.Necroptosis and apoptosis convert to each other.Necroptosis may be important to cure of two kinds of diseases.One involves acute critical diseases such as acute ischemia,acute inflammation and acute organ failure,etc.The other includes malignant tumors and virus infections.Prevention from necroptosis is beneficial to the therapy for the former.On the contrary,promotion to necroptosis is beneficial to that for the latter.Collectively,the findings of necroptosis make modulation of necrosis possible.The research on necroptosis will certainly promote our understanding in cell death and disease mechanisms as well as clinical therapy.
文摘目的:探讨活性氧自由基(ROS)在肾小管上皮细胞necroptosis中的作用。方法:构建肾小管上皮细胞HK-2细胞necroptosis模型,检测其ROS升高程度。并使用NADPH酶抑制剂Apocynin抑制HK-2细胞necroptosis模型中ROS的生成,通过流式细胞计数及检测necroptosis的关键蛋白观察HK-2细胞necroptosis的变化。结果:使用肿瘤坏死因子α、苄氧羰酰-缬氨酰-丙氨酰-天冬氨酰-氟甲基酮及抗霉素A成功建立了HK-2细胞necroptosis模型,并观察到HK-2细胞发生necroptosis时ROS显著升高(43.29±2.49 vs 25.90±1.27,P<0.001),而使用necrostatin-1抑制necroptosis后ROS生成受到抑制(35.58±1.08 vs 43.29±2.49,P=0.002)。当对necroptosis模型使用Apocynin干预时,HK-2细胞ROS明显下降(30.71±2.82 vs 43.29±2.49,P<0.001),并且流式细胞计数结果显示坏死细胞比例减少(2.00%±0.30%vs 6.99%±2.79%,P<0.001),同时受体相关蛋白3和混合系列蛋白激酶样结构域的磷酸化水平降低。结论:ROS参与了HK-2细胞的necroptosis,并且通过抑制ROS的生成可减少necroptosis发生,提高损伤状态下HK-2细胞存活率,减轻急性肾小管坏死。
基金supported by the National Natural Science Foundation of China,Nos.81772134(to KX),81971891(to KX),82172196(to KX),81571939(to KX)the Fundamental Research Funds for the Central Universities of Central South University of China,No.2020zzts218,(to WTY)Hunan Provincial Innovation Foundation For Postgraduate of China,Nos.CX20200116(to WTY),CX20190139(to LSL).
文摘Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all the components of PANoptosis to be regulated simultaneously.PANoptosis provides a new way to study the regulation of cell death,in that different types of cell death may be regulated at the same time.To test whether PANoptosis exists in diseases other than infectious diseases,we chose cerebral ischemia/reperfusion injury as the research model,collected articles researching cerebral ischemia/reperfusion from three major databases,obtained the original research data from these articles by bibliometrics,data mining and other methods,then integrated and analyzed these data.We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion.In the cell model simulating ischemic brain injury,pyroptosis,apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons.Pyroptosis,apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury.This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
基金supported by grants from the Heart and Stroke Foundation of Canada(HHC,AFRS)the Canadian Institutes of Health Research(to HHC and AFRS)supported by a Mid-Career Investigator Award from the Heart and Stroke Foundation of Ontario
文摘Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK) associated with the tumor necrosis factor-alpha (TNF-a)/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and al- leviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar con- centrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/ kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-u. However, subsequent lower doses (5 mg/kg/day) failed to sustain this neuroprotective effect after 4 days. Dabrafenib bl ocked lipopolysaccharides-induced activation of TNF-ct in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-ct-induced necroptotic pathway after ischemic brain injury. Since Dab- rafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.
基金supported by the National Natural Science Foundation of China,Nos. 81772134,81971891,and 81571939 (to KX)the Key Research and Development Program of Hunan Province of China,No. 2018SK2091 (to KX)+3 种基金Hunan Provincial Innovation Foundation For Postgraduate,No. CX20200116 (to WTY)Wu Jie Ping Medical Foundation of the Minister of Health of China,No. 320.6750.14118 (to KX)Foundation of Science and Technology of Hunan Province of China,No. 2018JJ2552 (to YC)the Project of Graduate Independent Exploration and Innovation Plan of Central South University of China,No. 2020zzts218 (to WTY)。
文摘There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.
基金funded by the National Natural Science Foundation of China,No.81971891(to KX),81571939(to KX),81772134(to KX),81772024(to JY),and 81860781(to FXL)the Key Research and Development Program of Hunan Province of China,No.2018SK2091(to KX)+1 种基金the Natural Science Foundation of Hunan Province of China,No.2017JJ2339(to JY)the Wu Jie-Ping Medical Foundation of the Minister of Health of China,No.320.6750.14118(to KX)
文摘Methamphetamine is one of the most prevalent drugs abused in the world.Methamphetamine abusers usually present with hyperpyrexia (39℃),hallucination and other psychiatric symptoms.However,the detailed mechanism underlying its neurotoxic action remains elusive.This study investigated the effects of methamphetamine + 39℃ on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats.Primary cortex neurons were exposed to 1 mM methamphetamine + 39℃.Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39℃ triggered obvious necrosis-like death in cultured primary cortical neurons,which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially.Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39℃ for 3 hours.After pre-treatment with RIP3 inhibitor GSK’872,propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased;RIP3 and MLKL protein expression significantly decreased.Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse.Taken together,the above results suggest that methamphetamine + 39℃ can induce RIP3/MLKL regulated necroptosis,thereby resulting in neurotoxicity.The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University,China (approval numbers: 2017-S026 and 2017-S033) on March 7,2017.
基金This work was supported by grants from the Natural Science Foundation of Jiangxi Province (No.20161bab215222Educational Commission of Jiangxi Province of China (No.gjjl50147)Cultivation Scientific Research Fund for the Junior Teachers of Medicine in Nanchang University (No.py201826).
文摘Necroptosis is a non-apoptotic programmed cell death pathway,which causes necrosislike morphologic changes and triggers inflammation in the surrounding tissues.Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases.However,the exact molecular pathways linking them remain unknown.Herein,this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases,including atherosclerosis,cardiac ischemia-reperfusion injury,cardiac hypertrophy,dilated cardiomyopathy and myocardial infarction,and may shed light on the diagnosis and treatment of these diseases.
基金Supported by A grant of the Korea Healthcare technology R and D Project,Ministry of Health and Welfare,South Korea,NO.A121185
文摘Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ’s physiological function. For long, only apoptosis was considered as a sole form of programmed cell death. Recently necroptosis, a RIP1/RIP3-dependent programmed cell death, has been identified as an apoptotic backup cell death mechanism with necrotic morphology. The evidences of necroptosis and protective effects achieved by blocking necroptosis have been extensively reported in recent past. However, only a few studies reported the evidence of necroptosis and protective effects achieved by inhibiting necroptosis in liver related disease conditions. Although the number of necroptosis initiators is increasing; however, interestingly, it is still unclear that what actually triggers necroptosis in different liver diseases or if there is always a different necroptosis initiator in each specific disease condition followed by specific downstream signaling molecules. Understanding the precise mechanism of necroptosis as well as counteracting other cell death pathways in liver diseases could provide a useful insight towards achieving extensive therapeutic significance. By targeting necroptosis and/or other parallel death pathways, a significant cell loss and thus a decrement in an organ’s physiological function can be prevented.
基金Supported by State Administration of Traditional Chinese Medicine of Heilongjiang Province,No.ZHY16-027Harbin Municipal Science and Technology BureauYouth Reserve Talent Project,No.2017RAQXJ170
文摘BACKGROUND Receptor interacting protein kinase 1(RIPK1)-mediated cell death,including apoptosis and necroptosis,belongs to programmed cell death.It has been reported that RIPK1-mediated necroptosis exists in lesions of cerebral hemorrhage(CH).Electroacupuncture,a treatment derived from traditional Chinese medicine,could improve neurological impairment in patients with brain injury.AIM To investigate the protective role of cross electro-nape acupuncture(CENA)in CH,and clarify the potential mechanism.METHODS CH rat models were established,and CENA was applied to the experimental rats.Neurological functions and encephaledema were then measured.Necrotic cells in the brain of rats with CH were evaluated by propidium iodide staining.Necroptosis was assessed by immunofluorescence.Activation of the necroptosisrelated pathway was detected by western blot.Extraction of brain tissue,cerebrospinal fluid and serum samples was conducted to measure the expression and secretion of inflammatory cytokines by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.RESULTS The necroptotic marker p-MLKL was detectable in the brains of rats with CH.Next,we found that CENA could ameliorate neurological functions in rat models of CH.Moreover,the upregulation of RIPK1-mediated necroptosis-related molecules in the brains of rats with CH were inhibited by CENA.Further investigation revealed that CENA partially blocked the interaction between RIPK1 and RIPK3.Finally,in vivo assays showed that CENA decreased the expression of the inflammatory cytokines tumor necrosis factor-α,interleukin-6 and interleukin-8 in CH rat models.CONCLUSION These findings revealed that CENA exerts a protective role in CH models by inhibiting RIPK1-mediated necroptosis.
基金Supported by Medical Science Research Foundation of Health Bureau of Zhejiang Province,No.WKJ-ZJ-1516
文摘Guo-Qiang XuFor a long time, it was believed that apoptosis and necrosis were the main pathways for cell death, but a growing body of research has shown that there are other pathways. Among these, necroptosis, a regulatory caspase-independent, programmed cell death pathway, is supposed to be of importance in the pathogenesis of many diseases. The mechanism of regulating, in-ducing and blocking necroptosis is a complex process that involves expression and regulation of a series of molecules including receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase like protein. By blocking or downregulating expression of key molecules in the necroptotic pathway, intestinal inflammation can be affected to some extent. In this paper, we introduce the concept of necroptosis, its main pathway, and its impact on the pathogenesis ofinfammatory bowel disease (IBD) and other intestinal diseases, to explore new drug targets for intestinal diseases, including IBD.