Based on the data at 29 monitoring sites in the whole basin of the Yujiang River and the Xunjiang River in Guigang City during 2014-2021,the single-factor evaluation method and the modified Nemerow pollution index met...Based on the data at 29 monitoring sites in the whole basin of the Yujiang River and the Xunjiang River in Guigang City during 2014-2021,the single-factor evaluation method and the modified Nemerow pollution index method were used to analyze temporal and spatial distribution characteristics of water quality in the Yujiang River and the Xunjiang River basins.The results showed that the Wusi River(the Yujiang River)and the Dahuang River(the Xunjiang River)had the best water quality,while water quality of the Duchong River(the Yujiang River)was the worst,and the proportion of inferior to class V reached 93%.The second was the Shepo River(the Xunjiang River),and the proportions of inferior to class V and below class IV were 21%and 64%.Comprehensive Nemerow pollution index was used to evaluate the water quality of the Yujiang River and the Xunjiang River during 2014-2021.Five tributary sections with worse water quality were the Duchong River,Xiajiangkou,the Chencun River,the Liyu River,and the Dongtang River,and NH3-N and TP exceeded the standard seriously.Among them,water quality of the Duchong River was the worst and was slightly improved during 2018-2021,but it still exceeded the standard seriously.The analysis showed that the main source of serious eutrophication in the basin was the increase of NH3-N and TP concentrations caused by agricultural non-point source emissions.展开更多
Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samp...Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.展开更多
Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling...Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.展开更多
Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study,...Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn 〉 Cr 〉 Cu 〉 Ni 〉 Pb 〉 As 〉 Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River,and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk.展开更多
基金Supported by Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project in Guangxi Colleges and Universities(2021KY1970)。
文摘Based on the data at 29 monitoring sites in the whole basin of the Yujiang River and the Xunjiang River in Guigang City during 2014-2021,the single-factor evaluation method and the modified Nemerow pollution index method were used to analyze temporal and spatial distribution characteristics of water quality in the Yujiang River and the Xunjiang River basins.The results showed that the Wusi River(the Yujiang River)and the Dahuang River(the Xunjiang River)had the best water quality,while water quality of the Duchong River(the Yujiang River)was the worst,and the proportion of inferior to class V reached 93%.The second was the Shepo River(the Xunjiang River),and the proportions of inferior to class V and below class IV were 21%and 64%.Comprehensive Nemerow pollution index was used to evaluate the water quality of the Yujiang River and the Xunjiang River during 2014-2021.Five tributary sections with worse water quality were the Duchong River,Xiajiangkou,the Chencun River,the Liyu River,and the Dongtang River,and NH3-N and TP exceeded the standard seriously.Among them,water quality of the Duchong River was the worst and was slightly improved during 2018-2021,but it still exceeded the standard seriously.The analysis showed that the main source of serious eutrophication in the basin was the increase of NH3-N and TP concentrations caused by agricultural non-point source emissions.
基金Project supported by the National Natural Science Foundation of China (No. 40001008) the Science and Technology Project of Zhejiang Province (No. 2004C32066).
文摘Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.
基金supported by the Inner Mongolia Autonomous Region Major Science and Technology Special Project (2019ZD001).
文摘Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.
基金supported by the National Basic Research Program (973) of China (No. 2015CB453103)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020102)the National Natural Science Foundation of China (Nos. 21477150 and 21321004)
文摘Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn 〉 Cr 〉 Cu 〉 Ni 〉 Pb 〉 As 〉 Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River,and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk.