期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fuzzy Logic Inference System for Managing Intensive Care Unit Resources Based on Knowledge Graph
1
作者 Ahmad F Subahi Areej Athama 《Computers, Materials & Continua》 SCIE EI 2023年第12期3801-3816,共16页
With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipul... With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system. 展开更多
关键词 Fuzzy logic role-based expert system decision-support system knowledge graph Internet of Things ICU resource management neo4j graph database
下载PDF
A Model Transformation Approach for Detecting Distancing Violations in Weighted Graphs
2
作者 Ahmad F.Subahi 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期13-39,共27页
This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awirele... This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area. 展开更多
关键词 Model-driven engineering(MDE) Internet-of-Things(IoTs) model transformation edge computing system design neo4j graph databases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部