A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence nea...A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.展开更多
Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the ...Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.展开更多
Newton's iteration is modified for the computation of the group inverses of singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with a low displacement rank. Because of the...Newton's iteration is modified for the computation of the group inverses of singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with a low displacement rank. Because of the displacement structure of the iteration matrix, the matrix-vector multiplication involved in Newton's iteration can be done efficiently. We show that the convergence of the modified Newton iteration is still very fast. Numerical results are presented to demonstrate the fast convergence of the proposed method.展开更多
The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and ...The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.展开更多
The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified converge...The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified convergence results, which include Kantorovich type theorems and Smale's point estimate theorems as special cases, are obtained.展开更多
In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calcul...In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximatin...A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximating the free surface and potential function. A set of nonlinear algebraic equations for the Fourier coefficients are derived from the free surface kinetic and dynamic boundary conditions. These algebraic equations are numerically solved through Newton's iterative method, and the iterative stability is further improved by a relaxation technology. The integral properties of steady water waves are numerically analyzed, showing that (1) the set-up and the set-down are both non-monotonic quantities with the wave steepness, and (2) the Fourier spectrum of the free surface is broader than that of the potential function. The latter further leads us to explore a modification for the present method by approximating the free surface and potential function through different Fourier series, with the truncation of the former higher than that of the latter. Numerical tests show that this modification is effective, and can notably reduce the errors of the free surface boundary conditions.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ...Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.展开更多
Inexact Newton methods are constructed by combining Newton's method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems f...Inexact Newton methods are constructed by combining Newton's method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton's method, we obtain a different Newton-Kantorovich theorem about Newton's method. When the iterative method for solving the Newton equations is specified to be the splitting method, we get two estimates about the iteration steps for the special inexact Newton methods.展开更多
This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied...This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton's method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.展开更多
We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expec...We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to its serial counterpart. We show how PSN can be applied to the large quadratic function minimization in general, and empirical risk minimization problems. We demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.展开更多
In this paper, we consider Newton's method for a class of entire functions with infinite order. By using theory of dynamics of functions meromorphic outside a small set, we find there are some series of virtual immed...In this paper, we consider Newton's method for a class of entire functions with infinite order. By using theory of dynamics of functions meromorphic outside a small set, we find there are some series of virtual immediate basins in which the dynamics converges to infinity and a series of immediate basins with finite area in the Fatou sets of Newton's method.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background...In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.展开更多
This paper gives a new iterative method to solve the non-linear equation. We prove that this method has the asymptotic convergent order. When the iterative times exceed 2,only one evaluation of the function and one of...This paper gives a new iterative method to solve the non-linear equation. We prove that this method has the asymptotic convergent order. When the iterative times exceed 2,only one evaluation of the function and one of its first derivative is required by each iteration of the method.Therefore the new method is better than Newton's method.展开更多
Using the forms of Newton iterative function, the iterative function of Newton’s method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equ...Using the forms of Newton iterative function, the iterative function of Newton’s method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equations in one variable in this paper and show that their convergence order is at least quadratic. At last we employ our methods to solve some non-linear equations and compare them with Newton’s method and Halley’s method. Numerical results show that our iteration schemes are convergent if we choose two suitable parametric functions λ(x) and μ(x). Therefore, our iteration schemes are feasible and effective.展开更多
基金Foundation item: Supported by the National Science Foundation of China(10701066)
文摘A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.
文摘Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.
基金Research supported in part by the National Natural Science Foundation of China under grant 10471027 and Shanghai Education Committee, RGC 7046/03P, 7035/04P, 7045/05P and HKBU FRGs.The authors would like to thank the referees for their useful suggestions.
文摘Newton's iteration is modified for the computation of the group inverses of singular Toeplitz matrices. At each iteration, the iteration matrix is approximated by a matrix with a low displacement rank. Because of the displacement structure of the iteration matrix, the matrix-vector multiplication involved in Newton's iteration can be done efficiently. We show that the convergence of the modified Newton iteration is still very fast. Numerical results are presented to demonstrate the fast convergence of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 10271025)the Program for New Century Excellent Talents in University of China
文摘The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.
基金Acknowledgments. This work was supported in part by the National Natural Science Foundation of China (Grant No. 10671175) and Program for New Century Excellent Talents in Universities. The first author was also supported in part by the Education Ministry of Zhejiang Province (Grant No. 20060492).
文摘The convergence properties of Newton's method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified convergence results, which include Kantorovich type theorems and Smale's point estimate theorems as special cases, are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.2011CBA00108)the National Basic Research Program of China(Grant No.2013CB921700)the Foundation of LCP
文摘In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
基金The Jiangsu Province Natural Science Foundation for the Young Scholar under contract No.BK20130827the Fundamental Research Funds for the Central Universities of China under contract No.2010B02614+1 种基金the National Natural Science Foundation of China under contract Nos 41076008 and 51009059the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximating the free surface and potential function. A set of nonlinear algebraic equations for the Fourier coefficients are derived from the free surface kinetic and dynamic boundary conditions. These algebraic equations are numerically solved through Newton's iterative method, and the iterative stability is further improved by a relaxation technology. The integral properties of steady water waves are numerically analyzed, showing that (1) the set-up and the set-down are both non-monotonic quantities with the wave steepness, and (2) the Fourier spectrum of the free surface is broader than that of the potential function. The latter further leads us to explore a modification for the present method by approximating the free surface and potential function through different Fourier series, with the truncation of the former higher than that of the latter. Numerical tests show that this modification is effective, and can notably reduce the errors of the free surface boundary conditions.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.
基金Supported by State Key Laboratory of Scientific/Engineering Computing,Chinese Academy of Sciencesthe National Natural Science Foundation of China (10571059,10571060).
文摘Inexact Newton methods are constructed by combining Newton's method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton's method, we obtain a different Newton-Kantorovich theorem about Newton's method. When the iterative method for solving the Newton equations is specified to be the splitting method, we get two estimates about the iteration steps for the special inexact Newton methods.
文摘This article discusses the dynamic state analysis of underwater towed-cable when tow-ship changes its speed in a direction making parabolic profile path. A three-dimensional model of underwater towed system is studied. The established governing equations for the system have been solved using the central implicit finite-difference method. The obtained difference non-linear coupled equations are solved by Newton's method and satisfactory results were achieved. The solution of this problem has practical importance in the estimation of dynamic loading and motion, and hence it is directly applicable to the enhancement of safety and the effectiveness of the offshore activities.
文摘We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained smooth convex functions. We analyze the method in the strongly convex case, and give conditions under which acceleration can be expected when compared to its serial counterpart. We show how PSN can be applied to the large quadratic function minimization in general, and empirical risk minimization problems. We demonstrate the practical efficiency of the method through numerical experiments and models of simple matrix classes.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No06C245)
文摘In this paper, we consider Newton's method for a class of entire functions with infinite order. By using theory of dynamics of functions meromorphic outside a small set, we find there are some series of virtual immediate basins in which the dynamics converges to infinity and a series of immediate basins with finite area in the Fatou sets of Newton's method.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.
基金Supported in part by the National Science Foundation of China(NSFC)under Grant Nos.11690022 and 11475237Strategic Priority Research Program of the Chinese Academy of Sciences(CAS), under Grant No.XDB23030100+1 种基金Key Research Program QYZDYSSWSYS007the CAS Center for Excellence in Particle Physics(CCEPP)
文摘In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.
基金Supported by the National Natural Science Foundation of China (10826082)the Key Disciplines Project of Shanghai Municipality (S30104)the Shanghai Leading Academic Discipline Project (J50101)
文摘This paper gives a new iterative method to solve the non-linear equation. We prove that this method has the asymptotic convergent order. When the iterative times exceed 2,only one evaluation of the function and one of its first derivative is required by each iteration of the method.Therefore the new method is better than Newton's method.
基金Supported by the National Natural Science Foundation of China (Grant Nos.6077304360473114)+5 种基金the Key Project Foundation of Scientific Research, Ministry of Education of China (Grant No.309017)the Doctoral Program Foundation of Ministry of Education of China (Grant No.20070359014)the Natural Science Key Foundation of Education Department of Anhui Province (Grant No.KJ2010A237)the Research Funds for Young Innovation Group of Education Department of Anhui Province (Grant No.2005TD03)the Provincial Foundation for Excellent Young Talents of Colleges and Universities of Anhui Province (Grant No.2010SQRL118)the Research Funds for Young Teachers in the College of Education Department of Anhui Province (Grant No.2008jq1158)
文摘Using the forms of Newton iterative function, the iterative function of Newton’s method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equations in one variable in this paper and show that their convergence order is at least quadratic. At last we employ our methods to solve some non-linear equations and compare them with Newton’s method and Halley’s method. Numerical results show that our iteration schemes are convergent if we choose two suitable parametric functions λ(x) and μ(x). Therefore, our iteration schemes are feasible and effective.