期刊文献+
共找到6,070篇文章
< 1 2 250 >
每页显示 20 50 100
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
1
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy 被引量:1
2
作者 Ya Shu Feng Peng +4 位作者 Zhi-Hui Xie Qiwen Yong Liang Wu Juning Xie Mei Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3292-3307,共16页
Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg... Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride). 展开更多
关键词 Magnesium alloy Corrosion coating Magnesium hydroxide BIOMATERIALS
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
3
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Adhesion property of AlCrNbSiTi high-entropy alloy coating on zirconium:experimental and theoretical studies
4
作者 Bao‑Liang Zhang Wen‑Guan Liu +5 位作者 Meng‑He Tu Can Fang Yan Liu Yu‑Hui Wang Yong Hu Hui Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期79-91,共13页
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep... Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development. 展开更多
关键词 High-entropy alloy coating Cr coating Adhesion property Scratch test First-principles calculation
下载PDF
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying
5
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
6
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating Titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
7
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
Antibacterial HA-coatings on bioresorbable Mg alloy
8
作者 K.V.Nadaraia D.V.Mashtalyar +13 位作者 M.A.Piatkova A.I.Pleshkova I.M.Imshinetskiy M.S.Gerasimenko E.A.Belov V.V.Kumeiko D.N.Kozyrev K.A.Fomenko V.V.Mostovaya B.R.Torpanov A.R.Biktimirov I.S.Osmushko S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1965-1985,共21页
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S... In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction. 展开更多
关键词 Bioactive coatings BIOCOMPATIBILITY Mg alloy Plasma electrolytic oxidation Hydroxyapatite VANCOMYCIN
下载PDF
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating
9
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy Self-healing coating Plasma electrolytic oxidation(PEO) Corrosion protection
下载PDF
Micro-aluminum powder with bi-or tri-component alloy coating as a promising catalyst:Boosting pyrolysis and combustion of ammonium perchlorate
10
作者 Chao Wang Ying Liu +6 位作者 Mingze Wu Jia Li Ying Feng Xianjin Ning Hong Li Ningfei Wang Baolu Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期100-113,共14页
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ... A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy. 展开更多
关键词 Micro-aluminum powder(μAl) Nano-sized alloy coating Combustion catalyst Ammonium perchlorate Pyrolysis behavior Ignition and combustion
下载PDF
Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys 被引量:14
11
作者 曾荣昌 孙芯芯 +4 位作者 宋影伟 张芬 李硕琦 崔洪芝 韩恩厚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3293-3299,共7页
The influence of phosphating bath at different temperatures on the formation and corrosion property of calcium-modified zinc phosphate conversion coating (Zn-Ca-P coating) on Mg-Li-Ca alloy was investigated. The mor... The influence of phosphating bath at different temperatures on the formation and corrosion property of calcium-modified zinc phosphate conversion coating (Zn-Ca-P coating) on Mg-Li-Ca alloy was investigated. The morphologies, elemental distribution and chemical structures of the coatings were examined via SEM, EPMA, EDS, XRD and FT-IR. The corrosion resistance was assessed by hydrogen evolution, potentiodynamic polarization and EIS. The results show that the coating is composed of single element Zn and ZnO at below 45 ℃;whereas the coatings are predominantly characterized by Zn3(PO4)2·4H2O and small amount of element zinc and ZnO at above 50 ℃. Mg-Li-Ca alloy with Zn-Ca-P coatings prepared at 55 ℃ has the highest corrosion resistance. However, the hydrogen evolution rates of the coatings obtained at 40-50 ℃ is accelerated due to the galvanic corrosion between the imperfection of the single element Zn coating and the Mg substrate. 展开更多
关键词 magnesium alloy lithium CALCIUM phosphate conversion coating corrosion biomaterial
下载PDF
Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles 被引量:8
12
作者 蔡滨 谭业发 +2 位作者 屠义强 王小龙 谭华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2426-2432,共7页
In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray t... In order to reduce the friction coefficient of Ni-base alloy coating and further improve its wear resistance,Ni-base alloy composite coatings modified by both graphite and TiC particles were prepared by plasma spray technology on the surface of 45 carbon steel.The results show that friction coefficient of the composite coating is 47.45% lower than that of the Ni-base alloy coating,and the wear mass loss is reduced by 59.1%.Slip lines and severe adhesive plastic deformation are observed on the worn surface of the Ni-base alloy coating,indicating that the wear mechanisms of the Ni-base alloy coating are multi-plastic deformation wear and adhesive wear.A soft transferred layer abundant in graphite and ferric oxide is developed on the worn surface of the composite coating,which reduces the friction coefficient and wear loss in a great deal.The main wear mechanism of the composite coating is fatigue delamination of the transferred layer. 展开更多
关键词 Ni-base alloy plasma spraying composite coating GRAPHITE TiC TRIBOLOGY
下载PDF
Effects of nitrogen flux on microstructure and tribological properties of in-situ TiN coatings deposited on TC11 titanium alloy by electrospark deposition 被引量:12
13
作者 洪翔 谭业发 +2 位作者 王小龙 谭华 徐婷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3329-3338,共10页
In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the mic... In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear. 展开更多
关键词 titanium alloy TiN coating electrospark deposition friction and wear
下载PDF
Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives 被引量:10
14
作者 陈东初 吴建锋 +2 位作者 梁奕清 叶树林 李文芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1905-1910,共6页
Ce(SO4)2?H2O2 solution was adopted to prepare a chemical conversion coating on AZ91D magnesium alloy.Additives of Ni(NO3)2 and sodium dodecyl benzene sulfonate were applied to improving the coating formation.SEM,... Ce(SO4)2?H2O2 solution was adopted to prepare a chemical conversion coating on AZ91D magnesium alloy.Additives of Ni(NO3)2 and sodium dodecyl benzene sulfonate were applied to improving the coating formation.SEM,EDS,XRD and GIXD were adopted to study the coating morphology,structure and composition,and the potential change curve in the treating solution was recorded to study the coating growth.Sodium dodecyl benzene sulfonate makes a remarkable improvement in the coating compactness,and shortens the time in the second stage of the coating formation from 5 min to 2 min.Compared to Ni(NO3)2,sodium dodecyl benzene sulfonate makes the more remarkable effect on the corrosion resistance improvement,since it can decrease the current density of corrosion from 7.41×10-5 A/cm2 to 2.20×10-5 A/cm2.The additives of Ni(NO3)2 and sodium dodecyl benzene sulfonate can enhance the Ce content from 18.92% to 22.32% and 25.08% in the coating,respectively.The XRD and GIXD results indicated that all the conversion coating formed in different solutions exhibit amorphous structure. 展开更多
关键词 magnesium alloys surface treatment conversion coating rare earth ADDITIVES
下载PDF
Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy 被引量:13
15
作者 曾荣昌 胡艳 +4 位作者 张芬 黄原定 王振林 李硕琦 韩恩厚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期472-483,共12页
Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat... Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys. 展开更多
关键词 AZ31 magnesium alloy CERIUM zinc calcium phosphate chemical conversion coating corrosion resistance
下载PDF
Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations 被引量:13
16
作者 郭惠霞 马颖 +3 位作者 王劲松 王宇顺 董海荣 郝远 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1786-1793,共8页
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions... Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h. 展开更多
关键词 micro-arc oxidation coating AZ91D magnesium alloy corrosion behavior chloride ion concentration electrochemical techniques
下载PDF
Tribological properties of nanostructured Al_2O_3-40%TiO_2 multiphase ceramic particles reinforced Ni-based alloy composite coatings 被引量:9
17
作者 何龙 谭业发 +2 位作者 谭华 周春华 高立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2618-2627,共10页
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib... The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear. 展开更多
关键词 nanostructured A1203-TiO2 multiphase ceramic particles Ni-based alloy composite coating plasma spray friction wear
下载PDF
Corrosion of in-situ grown Mg Al-LDH coating on aluminum alloy 被引量:4
18
作者 张芬 张昌磊 +3 位作者 宋亮 曾荣昌 刘振国 崔洪芝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3498-3504,共7页
Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.... Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.The effect of the p H value of the solution on the formation of the LDH coatings was studied.The optimum p H value of the solution was 10.0.The corrosion resistance of the LDH coatings was studied using potentiodynamic polarization tests and electrochemical impedance spectrum(EIS).The results demonstrate that the LDH coatings,characterized by platelets vertically to the substrate surface possess excellent corrosion resistance.The influence of the hydrothermal crystallization time on the corrosion resistance was evaluated.Prolonging the crystallization time can increase the corrosion resistance of the obtained LDH coatings.The anticorrosion mechanism of the LDH coatings was discussed. 展开更多
关键词 aluminum alloy layered double hydroxide coating CORROSION
下载PDF
Tribological behavior and mechanisms of graphite/CaF_2/TiC/Ni-base alloy composite coatings 被引量:4
19
作者 蔡滨 谭业发 +2 位作者 何龙 谭华 王小龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期392-399,共8页
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa... In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred 展开更多
关键词 plasma spray composite coatings Ni-base alloy GRAPHITE TIC CAF2 TRIBOLOGY
下载PDF
Effects of graphite content on microstructure and tribological properties of graphite/TiC/Ni-base alloy composite coatings 被引量:4
20
作者 蔡滨 谭业发 +2 位作者 屠义强 王小龙 徐婷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1741-1749,共9页
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o... In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction. 展开更多
关键词 TIC GRAPHITE Ni-base alloy plasma spray composite coating friction and wear
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部