Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as ...Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
Using plasma build-up welding technology, Ni60, WC, Cr3C2, and TiC composite powders were clad on the surface of the substrate in a certain proportion according to the metallurgical bonding method to increase the bond...Using plasma build-up welding technology, Ni60, WC, Cr3C2, and TiC composite powders were clad on the surface of the substrate in a certain proportion according to the metallurgical bonding method to increase the bond strength between the coating and the substrate. Scanning electron microscopy and energy dispersive spectroscopy were used to observe the microstructure of the surfacing layer and the chemical composition of the sample. The hardness and wear resistance of the surfacing layer were tested and analyzed by the HV-1000 hardness tester and the impact wear device. The results showed that in the microstructure, fishbone, spider-web, and floral-like structures appeared in the surfacing layer. When the micro-hardness was tested, the depth of the indentation reflected the hardness of the surfacing layer. When analyzing wear resistance, the amount of wear increases with time.展开更多
基金sponsored by the Centre for Industrial Photonics, Institute for Manufacture, Department of Engineering, University of Cambridgethe Natural Science Foundation of China (51271170)+1 种基金China International Science and Technology Cooperation Project (2011DFR50540)Major Scientific and Technological Special Key Industrial Project of Zhejiang Province (2012C11001)
文摘Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.
基金Funded by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2014RCJJ041)the National Natural Science Foundation of China(51774199)
文摘Using plasma build-up welding technology, Ni60, WC, Cr3C2, and TiC composite powders were clad on the surface of the substrate in a certain proportion according to the metallurgical bonding method to increase the bond strength between the coating and the substrate. Scanning electron microscopy and energy dispersive spectroscopy were used to observe the microstructure of the surfacing layer and the chemical composition of the sample. The hardness and wear resistance of the surfacing layer were tested and analyzed by the HV-1000 hardness tester and the impact wear device. The results showed that in the microstructure, fishbone, spider-web, and floral-like structures appeared in the surfacing layer. When the micro-hardness was tested, the depth of the indentation reflected the hardness of the surfacing layer. When analyzing wear resistance, the amount of wear increases with time.