MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
Electrocatalytic CO_(2)reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions,but still faces challenges to achieve both high product selectivit...Electrocatalytic CO_(2)reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions,but still faces challenges to achieve both high product selectivity and large current density.Here,we report a Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructured electrocatalyst embedded in accordion-like N-doped carbon through a simple molten salt annealing strategy.The optimal Ni_(4)N/Ni_(3)ZnC_(0.7)electrocatalyst achieves a high CO Faraday efficiency of 92.3%and a large total current density of-15.8 m A cm^(-2)at-0.8 V versus reversible hydrogen electrode,together with a long-term stability about 30 h.Density functional theory results reveal that the energy barrier for*COOH intermediate formation largely decreased on Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructure compared with Ni_(4)N and Ni_(3)ZnC_(0.7),thus giving rise to enhanced activity and selectivity.A rechargeable Zn-CO_(2)battery is further assembled with Ni_(4)N/Ni_(3)ZnC_(0.7)catalyst as the cathode,which shows a maximum power density of 0.85 mW cm^(-2)and excellent stability.展开更多
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金financially supported by the National Key Research and Development Program,China(2018YFB1502503)the 2021 Talent Introduction Project of Chongqing Medical and Pharmaceutical College(ygz2021104)。
文摘Electrocatalytic CO_(2)reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions,but still faces challenges to achieve both high product selectivity and large current density.Here,we report a Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructured electrocatalyst embedded in accordion-like N-doped carbon through a simple molten salt annealing strategy.The optimal Ni_(4)N/Ni_(3)ZnC_(0.7)electrocatalyst achieves a high CO Faraday efficiency of 92.3%and a large total current density of-15.8 m A cm^(-2)at-0.8 V versus reversible hydrogen electrode,together with a long-term stability about 30 h.Density functional theory results reveal that the energy barrier for*COOH intermediate formation largely decreased on Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructure compared with Ni_(4)N and Ni_(3)ZnC_(0.7),thus giving rise to enhanced activity and selectivity.A rechargeable Zn-CO_(2)battery is further assembled with Ni_(4)N/Ni_(3)ZnC_(0.7)catalyst as the cathode,which shows a maximum power density of 0.85 mW cm^(-2)and excellent stability.