A time-delay sea-air oscillator coupling model is studied. Using Mawhin's continuation theorem, the result on the existence of periodic solutions for the sea-air oscillator model is obtained.
On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, i...On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacif- ic, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the E1 Nino onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster develop- ment of an E1 Nino. During the decay stage, owing to a stronger E1Nino in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an E1 Nino decays into a La Nina through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attribut- ed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.展开更多
The present study revisited the first two leading modes of tropical Pacific sea surface temperature anomalies (SSTA) during the period of 1979-2008. It is suggested that the so-called El Nino Modoki, which is captur...The present study revisited the first two leading modes of tropical Pacific sea surface temperature anomalies (SSTA) during the period of 1979-2008. It is suggested that the so-called El Nino Modoki, which is captured by the second mode, exists objectively and exhibits obvious differences from traditional El Nifio, which is captured by the first mode, in terms of its spatial characteristics. Furthermore, the authors found that El Nino Modoki is linearly independent of traditional El Nino; hence, it cannot be described as part of the traditional El Nino evolution, and vice versa.展开更多
In recent decades, the typical E1 Nifio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of E1 Nifio with the wannest SSTs in the central the east and west by coole...In recent decades, the typical E1 Nifio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of E1 Nifio with the wannest SSTs in the central the east and west by cooler Pacific, which is flanked on SSTs, has become more frequent. The more recent type of E1 Nifio was referred to as central Pacific E1 Nifio, warm pool E1 Nifio, or dateline E1 Nifio, or the E1 Nifio Modoki. Central Pacific E1 Nifio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several clas- sification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropi- cal Pacific Ocean sea surface temperature anomaly (SSTA), and the typical E1 Nifio index (TENI) and the central E1 Nifio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin- guish the different impacts of the two types of events on rainfall in the following summer in East China. The typi- cal E1 Nifio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nifio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of E1 Nifio on the East Asian climate.展开更多
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air ...The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.展开更多
Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection an...Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.展开更多
Based on the Simple Ocean Data Assimilation (SODA) from 1970 to 2001, equatorial currents and their association with the warm water propagation mechanism during two patterns of El Nifio events are studied. In this s...Based on the Simple Ocean Data Assimilation (SODA) from 1970 to 2001, equatorial currents and their association with the warm water propagation mechanism during two patterns of El Nifio events are studied. In this study, the middle-pattern of E1 Nifio (ME) and the eastern-pattern of E1 Nifio (EE) events are defined as anomalous warm water originating first to the west and the east of 120°W, respectively. It is pointed out that the westerly and eastward anomalous currents in the western Pacific are stronger during the ME event than the EE event, which is conducive to the eastward migration of warm water from western Pacific by zon'al advection of temperature. In contrast, the weaker westerly and the west- ward anomalous currents east of the dateline would be unfavorable for the eastward migration of warm water during EE events. More importantly, another propagation mechanism of the warm water is attributed to the anomalous convergence of the surface currents, as well as the anomalous divergence of the subsurface currents, which obstruct the upwelling of colder water from the deep ocean. Meanwhile, the anomalous convergence of the surface currents and the anomalous divergence of the subsurface currents maintain eastward migration, which plays an important role in the eastward migration of the warm water during ME events. Although there is anomalous convergence in the upper ocean and anomalous divergence in the subsurface ocean during EE events, they appear quasi-stationary in the western Pacific. The warm water over the eastern Pacific during EE events is caused by the local anomalous convergence of surface currents and the anomalous divergence of subsurface currents.展开更多
ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO)...ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO) on the interannual timescale in a companion paper. In this study, the connection between the transition chains of the four oscillations (the NO and NPO, the SO and AAO) and the El Nifio/La Nifia cycle were examined. It was found that during the transitions of the four oscillations, alternate anticyclonic/cyclonic correlation centers propagated from the Western Pacific to the Eastern Pacific along both sides of the equator. Between the anticyclonic/cyclonic correlation centers, the zonal wind anomalies also moved eastwardly, favoring the advection of sea surface temperature anomalies from the tropical Western Pacific to the Eastern Pacific. When the anti cyclonic anomalies arrived in the Eastern Pacific, the positive phase of NO/SO and La Nifia were established and vice versa. Thus, in 4-6 years, with an entire transition chain of the four oscillations, an E1 Nifio/La Nifia cycle completed. The eastward propagation of the covarying anomalies of the sea level pressure, zonal wind, and sea surface temperature was critical to the transition chains of the four oscillations and the cycle of E1 Nifio/La Nifia. Based on their close link, a new empirical prediction method of the timing of E1 Nifio by the transition chains of the four oscillations was proposed. The assessment provided confidence in the ability of the new method to supply information regarding the long-term variations of the ocean and atmosphere in the tropical Pacific.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 40676016).
文摘A time-delay sea-air oscillator coupling model is studied. Using Mawhin's continuation theorem, the result on the existence of periodic solutions for the sea-air oscillator model is obtained.
基金The Strategic Priority Research Program of Chinese Academy of Sciences under contract No.XDA05110201the National Basic Research Program(973 Program) of China under contract No.2010CB951901
文摘On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacif- ic, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the E1 Nino onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster develop- ment of an E1 Nino. During the decay stage, owing to a stronger E1Nino in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an E1 Nino decays into a La Nina through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attribut- ed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40975029,40675028,and 40810059005)
文摘The present study revisited the first two leading modes of tropical Pacific sea surface temperature anomalies (SSTA) during the period of 1979-2008. It is suggested that the so-called El Nino Modoki, which is captured by the second mode, exists objectively and exhibits obvious differences from traditional El Nifio, which is captured by the first mode, in terms of its spatial characteristics. Furthermore, the authors found that El Nino Modoki is linearly independent of traditional El Nino; hence, it cannot be described as part of the traditional El Nino evolution, and vice versa.
基金supported by the Nationa Basic Research Program of China, "Oceanic circulation, structure characteristics, variation mechanisms, and climate effects of thewarm pool in the tropical Pacific", under Grant 2012CB417403
文摘In recent decades, the typical E1 Nifio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of E1 Nifio with the wannest SSTs in the central the east and west by cooler Pacific, which is flanked on SSTs, has become more frequent. The more recent type of E1 Nifio was referred to as central Pacific E1 Nifio, warm pool E1 Nifio, or dateline E1 Nifio, or the E1 Nifio Modoki. Central Pacific E1 Nifio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several clas- sification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropi- cal Pacific Ocean sea surface temperature anomaly (SSTA), and the typical E1 Nifio index (TENI) and the central E1 Nifio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin- guish the different impacts of the two types of events on rainfall in the following summer in East China. The typi- cal E1 Nifio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nifio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of E1 Nifio on the East Asian climate.
基金supported by the 973 Program (Grant No.2010CB950400)the National Natural Science Foundation of China (Grant Nos.41225018 and 41305036)
文摘The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.
基金supported by the National Program for Support of Top-notch Young Professionals,the National Basic Research Program of China (Grant Nos. 2012CB955202 and 2012CB417404)"Western Pacific Ocean System: Structure, Dynamics, and Consequences" of the Chinese Academy Sciences (WPOS+1 种基金 Grant No. XDA10010405)the National Natural Science Foundation of China (Grant No. 41176014)
文摘Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.
基金the Research on Theories and Methods of Monitoring and Predicting of Heavy Rainfall in South China(2004CB418303)the National Natural Science Foundation of China under Grant Nos. 40523001, 40776011and 40775037Key Knowledge Innovation Project of Chinese Academy of Sciences (KZCX3-SW-226)
文摘Based on the Simple Ocean Data Assimilation (SODA) from 1970 to 2001, equatorial currents and their association with the warm water propagation mechanism during two patterns of El Nifio events are studied. In this study, the middle-pattern of E1 Nifio (ME) and the eastern-pattern of E1 Nifio (EE) events are defined as anomalous warm water originating first to the west and the east of 120°W, respectively. It is pointed out that the westerly and eastward anomalous currents in the western Pacific are stronger during the ME event than the EE event, which is conducive to the eastward migration of warm water from western Pacific by zon'al advection of temperature. In contrast, the weaker westerly and the west- ward anomalous currents east of the dateline would be unfavorable for the eastward migration of warm water during EE events. More importantly, another propagation mechanism of the warm water is attributed to the anomalous convergence of the surface currents, as well as the anomalous divergence of the subsurface currents, which obstruct the upwelling of colder water from the deep ocean. Meanwhile, the anomalous convergence of the surface currents and the anomalous divergence of the subsurface currents maintain eastward migration, which plays an important role in the eastward migration of the warm water during ME events. Although there is anomalous convergence in the upper ocean and anomalous divergence in the subsurface ocean during EE events, they appear quasi-stationary in the western Pacific. The warm water over the eastern Pacific during EE events is caused by the local anomalous convergence of surface currents and the anomalous divergence of subsurface currents.
基金supported by the National Key Technologies R&D Program of China (Grant No.2009BAC51B02)the National Basic Research Program of China (Grant NO.2012CB957803)
文摘ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO) on the interannual timescale in a companion paper. In this study, the connection between the transition chains of the four oscillations (the NO and NPO, the SO and AAO) and the El Nifio/La Nifia cycle were examined. It was found that during the transitions of the four oscillations, alternate anticyclonic/cyclonic correlation centers propagated from the Western Pacific to the Eastern Pacific along both sides of the equator. Between the anticyclonic/cyclonic correlation centers, the zonal wind anomalies also moved eastwardly, favoring the advection of sea surface temperature anomalies from the tropical Western Pacific to the Eastern Pacific. When the anti cyclonic anomalies arrived in the Eastern Pacific, the positive phase of NO/SO and La Nifia were established and vice versa. Thus, in 4-6 years, with an entire transition chain of the four oscillations, an E1 Nifio/La Nifia cycle completed. The eastward propagation of the covarying anomalies of the sea level pressure, zonal wind, and sea surface temperature was critical to the transition chains of the four oscillations and the cycle of E1 Nifio/La Nifia. Based on their close link, a new empirical prediction method of the timing of E1 Nifio by the transition chains of the four oscillations was proposed. The assessment provided confidence in the ability of the new method to supply information regarding the long-term variations of the ocean and atmosphere in the tropical Pacific.