The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are rest...The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.展开更多
Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental...Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.展开更多
To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-va...To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-vacancy TiO2(Ru/TiO2-Vo).Structural characterizations revealed that oxygen vacancy was loaded in the matrix of Ru/TiO2-Vo.Electrocatalytic results indicated that Ru/TiO2-Vo showed good NRR performance(2.11μg h^-1 cm^-2).Contrast tests showed that NRR property of Ru/TiO2-Vo was much better than those of Ru/TiO-12(B)(0.53μg hcm^-2)and Ru/P25(0.42μg h^-1 cm^-2).Furthermore,density functional theory calculation results indicated catalytic mechanism of NRR and rate-determining step(*N2+1/2 H2→*N+*NH)was the potential-determining step with the overpotential requirement of 0.21 V.A combination of electronic structure analysis and catalytic measurement shed light on the synergistic effect of Ru and oxygen vacancy on the NRR performance.展开更多
Developing efficient electrocatalysts for nitrogen reduction reaction(NRR)is crucial to replace the both energy-intensive and environment-malignant Haber-Bosch process.Here using density functional theory calculations...Developing efficient electrocatalysts for nitrogen reduction reaction(NRR)is crucial to replace the both energy-intensive and environment-malignant Haber-Bosch process.Here using density functional theory calculations,we systematically studied the potential of the heteronuclear 3 d transition metal dimers anchored graphdiyne monolayers(FeM@and NiM@GDY,M=Ti,V,Cr,Mn,Fe,Co,Ni,and Cu)as efficient NRR catalysts.Among all the studied double-atom catalysts(DACs),FeCo@and NiCo@GDY are the most promising with excellent NRR catalytic activity,high ability to suppress the competing hydrogen evolution reaction(HER),and good stability.For both FeCo@and NiCo@GDY,NRR prefers to the distal pathway with the calculated onset potentials of -0.44 and -0.36 V,respectively,which are comparable and even better than their homonuclear counterparts.Moreover,FeCo@and NiCo@GDY have higher ability to suppress HER than Fe_(2)@ and Co_(2)@GDY,which may result from the modulated d state electronic structure due to the synergy effect of the heteronuclear atoms in the DACs.Our work not only suggests that FeCo@and NiCo@GDY hold great promises as efficient,low-cost,and stable DACs for NRR,but also further provides a strategy,i.e.alloying the atomic metal catalysts,to improve the NRR catalytic activity and/or selectivity.展开更多
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3...Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)at ambient conditions holds great promise for sustainably synthesizing ammonia(NH3),while developing highly-efficient,long-term stable,and inexpensive catalysts to acti...Electrocatalytic nitrogen reduction reaction(NRR)at ambient conditions holds great promise for sustainably synthesizing ammonia(NH3),while developing highly-efficient,long-term stable,and inexpensive catalysts to activate the inert N≡N bond is a key scientific issue.In this work,on the basis of the concept"N-heterocyclic carbenes(NHCs)",we propose a carbon decorated graphitic-carbon nitride(C/g-C3N4)as novel metal-free NRR electrocatalyst by means of density functional theory(DFT)computations.Our results reveal that the introduced C atom in g-C3N4 surface can be regarded as NHCs and catalytic sites for activating N≡N bond,and are stabilized by the g-C3N4 substrate due to sterically disfavored dimerization.Especially,this NHCs-based heterogeneous catalysis can efficiently reduce the activated N2 molecule to NH3 with a low overpotential of 0.05 V via an enzymatic mechanism.Our work is the first report of NHCs-based electrocatalyst for N2 fixation,thus opening an alternative avenue for advancing sustainable NH3 production.展开更多
Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focus...Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research.展开更多
The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value.Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon mat...The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value.Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon matrix(CrP/NPC)are synthesized via a consecutive Cr^(6+)leachate treatment and resource recovery process.Electrochemical testing shows that CrP/NPC shows excellent nitrogen reduction reaction(NRR)performance,which yields the highest NH_(3) production rate of 22.56μg h^(−1) mg^(−1)_(cat).and Faradaic efficiency(16.37%)at−0.5 V versus the reversible hydrogen electrode in a 0.05M Na_(2)SO_(4) aqueous solution,as well as robust catalytic stability.The isotopic experiments using ^(15)N^(2) as a nitrogen source confirm that the detected NH_(3) is derived from the NRR process.Finally,density functional theory(DFT)calculations show that the electron deficiency environment of the Cr site can significantly reduce the barrier of the NRR process and promote the formation of intermediate species.展开更多
Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first ti...Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.展开更多
The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fab...The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.展开更多
The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The ...The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The photocatalytic reduction of N_(2)is expected to achieve clean and sustainable NH_(3)production by using clean solar energy.To date,the new photocatalysts for photocatalytic reduction of N_(2)to NH_(3)at room temperature and atmospheric pressure have not been fully developed.The major challenge is to achieve high light-absorption efficiency,conversion efficiency,and stability of photocatalysts.Herein,the methods for measuring produced NH_(3)are compared,and the problems related to possible NH_(3)pollution in photocatalytic systems are mentioned to provide accurate ideas for measuring photocatalytic efficiency.The recent progress of nitrogen reduction reaction(NRR)photocatalysts at ambient temperature and pressure is summarized by introducing charge transfer,migration,and separation in photocatalytic NRR,which provides a guidance for the selection of future photocatalyst.More importantly,we introduce the latest research strategies of photocatalysts in detail,which can guide the preparation and design of photocatalysts with high NRR activity.展开更多
Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Dev...Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Development and design of high-performance NRR electrocatalysts are indispensable to achieve the goal.In this work,a strongly coupled hybrid of nano-Fe3O4 with reduced graphene oxide(rGO)is synthesized via an in situ redox hydrothermal approach,and the synthesized Fe_(3)O_(4)@r GO hybrid has excellent activity,selectivity,and stability as an NRR catalyst.The NH_(3) yield rate of 28.01μg h^(-1)mg^(-1)at-0.3 V and the Faradaic efficiency(FE)of 19.12%at-0.1 V are obtained in 0.1 M Na_(2)SO_(4) solutions at ambient conditions.The superior NRR performance is attributed to the chemical coupling effect between r GO and nano-Fe_(3)O_(4) particles,which leads to the enhancement of the binding affinity to N_(2) molecules,improvement of the conductivity,and lowering the free energy of reaction for the limiting reaction step.This work provides a facile route in fabricating hybrid NRR catalysts with superior performance and shed lights on the reaction mechanism with theoretical mechanistic calculations.展开更多
Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐N...Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐NRR)under ambient conditions is considered a promising alternative to the H‐B process and has been attracting increasing attention owing to its associated energy effi‐ciency and environmentally friendly characteristics.The performance of a PEC‐NRR system,such as the NH_(3) yield,selectivity,and stability,is essentially determined by its key component,the photo‐cathode.In this review,the latest progress in the development of photocathode materials employed in PEC‐NRR is evaluated.The fundamental mechanisms and essential features required for the PEC‐NRR are introduced,followed by a discussion of various types of photocathode materials,such as oxides,sulfides,selenides,black silicon,and black phosphorus.In particular,the PEC‐NRR reac‐tion mechanisms associated with these photocathode materials are reviewed in detail.Finally,the present challenges and future opportunities related to the further development of PEC‐NRR are also discussed.This review aims to improve the understanding of PEC‐NRR photocathode materials while also shedding light on the new concepts and significant innovations in this field.展开更多
Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory c...Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene(hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction(NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dualatom catalysts for NRR.展开更多
Ammonia(NH3), a carbon-free hydrogen carrier, is an important commodity for the food supply chain owing to its high energy capacity and ease of storage and transport. The Haber-Bosch process is currently the favored i...Ammonia(NH3), a carbon-free hydrogen carrier, is an important commodity for the food supply chain owing to its high energy capacity and ease of storage and transport. The Haber-Bosch process is currently the favored industrial method for large-scale ammonia production but requires energy-intensive and sophisticated infrastructure which hampers its utilization in a sustainable and decentralized system of manufacture.The electrochemical nitrogen reduction reaction(eNRR) at ambient conditions holds great potential for sustainable production of ammonia using electricity generated from renewable energy sources such as solar and wind. However, this approach is limited by a low rate of ammonia production with high overpotential and the competing hydrogen evolution reaction(HER). For a better understanding and utilization of eNRR as a sustainable process, insight into rational catalyst design and mechanistic evaluations by a theoretically-directed experimental approach is imperative. Herein, recent insights into rational catalyst design and mechanisms, based on intrinsic and extrinsic catalytic activity are articulated.Following the elucidation of basic principles and mechanisms, a framework supplied by theoretical studies that lead to the optimal selection and development of eNRR catalysts is presented. Following a discussion of recently developed electrocatalysts for eNRR, we outline various recently-used theoretical and experimental methodologies to improve the intrinsic and extrinsic catalytic activity of advanced electrocatalysts.This review is anticipated to contribute to the development of active, selective, and efficient catalysts for nitrogen reduction.展开更多
Electrochemical nitrogen reduction reaction(NRR)is one of the most promising alternatives to the traditional Haber-Bosch process.Designing efficient electrocatalysts is still challenging.Inspired by the recent experim...Electrochemical nitrogen reduction reaction(NRR)is one of the most promising alternatives to the traditional Haber-Bosch process.Designing efficient electrocatalysts is still challenging.Inspired by the recent experimental and theoretical advances on single-cluster catalysts(SCCs),we systematically investigated the catalytic performance of various triple-transition-metal-atom clusters anchored on nitrogen-doped graphene for NRR through density functional theory(DFT)calculation.Among them,Mn_(3)-N4,Fe_(3)-N4,Co_(3)-N4,and Mo_(3)-N4 were screened out as electrocatalysis systems composed of non-noble metal with high activity,selectivity,stability,and feasibility.Particularly,the Co_(3)-N4 possesses the highest activity with a limiting potential of-0.41 V through the enzymatic mechanism.The outstanding performance of Co_(3)-N4 can be attributed to the unique electronic structure leading to strong π backdonation,which is crucial in effective N_(2) activation.This work not only predicts four efficient non-noble metal electrocatalysts for NRR,but also suggest the SCCs can serve as potential candidates for other important electrochemical reactions.展开更多
The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemica...The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemical NRR presents several practical challenges,including sluggish reaction and low selectivity.Here,bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers.It could accelerate the kinetics of N_(2)-to-NH_(3) electrochemical conversion and possess better electrochemical NRR selectivity.This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.展开更多
Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation o...Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation of sustainable NH_(3)production.Herein,using ruthenium-sulfur-carbon(Ru-S-C)catalyst as a prototype,we show that the Ru/S dual-site cooperates to catalyse eletrocatalytic nitrogen reduction reaction(eNRR)at ambient conditions.With the combination of theoretical calculations,in situ Raman spectroscopy,and experimental observation,we demonstrate that such Ru/S dual-site cooperation greatly facilitates the activation and first protonation of N_(2)in the rate-determining step of eNRR.As a result,Ru-S-C catalyst exhibits significantly enhanced eNRR performance compared with the routine Ru-N-C catalyst via a single-site catalytic mechanism.We anticipate that our specifically designed dual-site collaborative catalytic mechanism will open up a new way to offers new opportunities for advancing sustainable NH_(3)production.展开更多
Catalytic reduction of molecular dinitrogen(N_(2))to ammonia(NH_(3))is one of the most important and challenging industrial reactions.Electrochemical reduction is considered as an energy-saving technology for artifici...Catalytic reduction of molecular dinitrogen(N_(2))to ammonia(NH_(3))is one of the most important and challenging industrial reactions.Electrochemical reduction is considered as an energy-saving technology for artificial ambient nitrogen fixation,which is emerging as an optimal potential sustainable strategy to substitute for the Haber–Bosch process.However,this process demands efficient catalysts for the N_(2)reduction reaction(NRR).Here,by means of first-principles calculations,we systematically explored the potential electrocatalytic performance of single transition metal atoms(Pd,Ag,Rh,Cu,Ti,Mo,Mn,Zn,Fe,Co,Ru,and Pt)embedded in monolayer defective boron phosphide(TMs/BP)monolayer with a phosphorus monovacancy for ambient NH_(3)production.Among them,the Mo/BP exhibits the best catalytic performance for ambient reduction of N_(2)through the typical enzymatic and consecutive reaction pathways with an activation barrier of 0.68 e V,indicating that Mo/BP is an efficient catalyst for N_(2)fixation.We believe that this work could provide a new avenue of ambient NH_(3)synthesis by using the designed single-atom electrocatalysts.展开更多
The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 d...The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.展开更多
文摘The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.
基金supports by the National Natural Science Foundation of China(52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)+1 种基金the Fundamental Research Funds for the Central Universities(CHD300102311405)HPC platform,Xi’an Jiaotong University.
文摘Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.
基金supported by the National Natural Science Foundation of China(Nos.21671172,21625604,21776251,21706229and Z86101001)Zhejiang Provincial Natural Science Foundation(No.LR19B010001)
文摘To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-vacancy TiO2(Ru/TiO2-Vo).Structural characterizations revealed that oxygen vacancy was loaded in the matrix of Ru/TiO2-Vo.Electrocatalytic results indicated that Ru/TiO2-Vo showed good NRR performance(2.11μg h^-1 cm^-2).Contrast tests showed that NRR property of Ru/TiO2-Vo was much better than those of Ru/TiO-12(B)(0.53μg hcm^-2)and Ru/P25(0.42μg h^-1 cm^-2).Furthermore,density functional theory calculation results indicated catalytic mechanism of NRR and rate-determining step(*N2+1/2 H2→*N+*NH)was the potential-determining step with the overpotential requirement of 0.21 V.A combination of electronic structure analysis and catalytic measurement shed light on the synergistic effect of Ru and oxygen vacancy on the NRR performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.11704005 and 11774078)the Program for Science&Technology Innovation Talents in Universities of Henan Province(Grant No.20HASTIT028)。
文摘Developing efficient electrocatalysts for nitrogen reduction reaction(NRR)is crucial to replace the both energy-intensive and environment-malignant Haber-Bosch process.Here using density functional theory calculations,we systematically studied the potential of the heteronuclear 3 d transition metal dimers anchored graphdiyne monolayers(FeM@and NiM@GDY,M=Ti,V,Cr,Mn,Fe,Co,Ni,and Cu)as efficient NRR catalysts.Among all the studied double-atom catalysts(DACs),FeCo@and NiCo@GDY are the most promising with excellent NRR catalytic activity,high ability to suppress the competing hydrogen evolution reaction(HER),and good stability.For both FeCo@and NiCo@GDY,NRR prefers to the distal pathway with the calculated onset potentials of -0.44 and -0.36 V,respectively,which are comparable and even better than their homonuclear counterparts.Moreover,FeCo@and NiCo@GDY have higher ability to suppress HER than Fe_(2)@ and Co_(2)@GDY,which may result from the modulated d state electronic structure due to the synergy effect of the heteronuclear atoms in the DACs.Our work not only suggests that FeCo@and NiCo@GDY hold great promises as efficient,low-cost,and stable DACs for NRR,but also further provides a strategy,i.e.alloying the atomic metal catalysts,to improve the NRR catalytic activity and/or selectivity.
基金supported by the National Natural Science Foundation of China(grant no.21904071 and 22071115)。
文摘Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.
基金financially supported in China by the National Natural Science Foundation of China(21103224 and 21878227)Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province(No.JC2018004)+2 种基金Natural Science Foundation of Hebei Province of China(B2019202210)in USA by NSF-CREST Center for Innovation,Research and Education in Environmental Nanotechnology(CIRE2N)(Grant Number HRD-1736093)supported by the Supercomputing Center in Harbin Normal University and Lvliang。
文摘Electrocatalytic nitrogen reduction reaction(NRR)at ambient conditions holds great promise for sustainably synthesizing ammonia(NH3),while developing highly-efficient,long-term stable,and inexpensive catalysts to activate the inert N≡N bond is a key scientific issue.In this work,on the basis of the concept"N-heterocyclic carbenes(NHCs)",we propose a carbon decorated graphitic-carbon nitride(C/g-C3N4)as novel metal-free NRR electrocatalyst by means of density functional theory(DFT)computations.Our results reveal that the introduced C atom in g-C3N4 surface can be regarded as NHCs and catalytic sites for activating N≡N bond,and are stabilized by the g-C3N4 substrate due to sterically disfavored dimerization.Especially,this NHCs-based heterogeneous catalysis can efficiently reduce the activated N2 molecule to NH3 with a low overpotential of 0.05 V via an enzymatic mechanism.Our work is the first report of NHCs-based electrocatalyst for N2 fixation,thus opening an alternative avenue for advancing sustainable NH3 production.
基金the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(grant number 161008)the Basic Research Program of Shenzhen(grant number JCYJ20190809120015163)+4 种基金the Key R&D Program of Hubei province(grant number 2020CFA087)the Fundamental Research Funds for the Central Universities(grant number 2019III-034)the Xiamen University Malaysia Research Fund(grant number XMUMRF/2019-C3/IENG/0013)the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(grant number FRGS/1/2020/TK02/XMU/02/1)the Overseas Expertise Introduction Project(111 project)for Discipline Innovation of China(grant number B18038)。
文摘Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research.
基金This study was supported by Taishan Scholars Project Special Funds(tsqn201812083)the Natural Science Foundation of Shandong Province(ZR2019YQ20 and 2019JMRH0410)the National Natural Science Foundation of China(51972147,52022037 and 52002145).
文摘The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value.Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon matrix(CrP/NPC)are synthesized via a consecutive Cr^(6+)leachate treatment and resource recovery process.Electrochemical testing shows that CrP/NPC shows excellent nitrogen reduction reaction(NRR)performance,which yields the highest NH_(3) production rate of 22.56μg h^(−1) mg^(−1)_(cat).and Faradaic efficiency(16.37%)at−0.5 V versus the reversible hydrogen electrode in a 0.05M Na_(2)SO_(4) aqueous solution,as well as robust catalytic stability.The isotopic experiments using ^(15)N^(2) as a nitrogen source confirm that the detected NH_(3) is derived from the NRR process.Finally,density functional theory(DFT)calculations show that the electron deficiency environment of the Cr site can significantly reduce the barrier of the NRR process and promote the formation of intermediate species.
基金The authors thank the financial support from the National Natural Science Foundation of China(No.51902204,52001214,21975163)Bureau of Industry and Information Technology of Shenzhen(No.201901171518)Shenzhen Science and Technology Program(KQTD20190929173914967).
文摘Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
文摘The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.
基金Taishan Scholars Program of Shandong Province,Grant/Award Number:tsqn201812068Higher School Youth Innovation Team of Shandong Province,Grant/Award Number:2019KJA013+1 种基金The Opening Fund of State Key Laboratory of Heavy Oil Processing,Grant/Award Number:SKLOP202002006National Natural Science Foundation of China,Grant/Award Number:51872173。
文摘The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The photocatalytic reduction of N_(2)is expected to achieve clean and sustainable NH_(3)production by using clean solar energy.To date,the new photocatalysts for photocatalytic reduction of N_(2)to NH_(3)at room temperature and atmospheric pressure have not been fully developed.The major challenge is to achieve high light-absorption efficiency,conversion efficiency,and stability of photocatalysts.Herein,the methods for measuring produced NH_(3)are compared,and the problems related to possible NH_(3)pollution in photocatalytic systems are mentioned to provide accurate ideas for measuring photocatalytic efficiency.The recent progress of nitrogen reduction reaction(NRR)photocatalysts at ambient temperature and pressure is summarized by introducing charge transfer,migration,and separation in photocatalytic NRR,which provides a guidance for the selection of future photocatalyst.More importantly,we introduce the latest research strategies of photocatalysts in detail,which can guide the preparation and design of photocatalysts with high NRR activity.
基金Sichuan Science and Technology Program(2018GZ0459)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the Fundamental Research Funds for the Central Universities(WUT:2020Ⅲ029)
文摘Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Development and design of high-performance NRR electrocatalysts are indispensable to achieve the goal.In this work,a strongly coupled hybrid of nano-Fe3O4 with reduced graphene oxide(rGO)is synthesized via an in situ redox hydrothermal approach,and the synthesized Fe_(3)O_(4)@r GO hybrid has excellent activity,selectivity,and stability as an NRR catalyst.The NH_(3) yield rate of 28.01μg h^(-1)mg^(-1)at-0.3 V and the Faradaic efficiency(FE)of 19.12%at-0.1 V are obtained in 0.1 M Na_(2)SO_(4) solutions at ambient conditions.The superior NRR performance is attributed to the chemical coupling effect between r GO and nano-Fe_(3)O_(4) particles,which leads to the enhancement of the binding affinity to N_(2) molecules,improvement of the conductivity,and lowering the free energy of reaction for the limiting reaction step.This work provides a facile route in fabricating hybrid NRR catalysts with superior performance and shed lights on the reaction mechanism with theoretical mechanistic calculations.
文摘Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐NRR)under ambient conditions is considered a promising alternative to the H‐B process and has been attracting increasing attention owing to its associated energy effi‐ciency and environmentally friendly characteristics.The performance of a PEC‐NRR system,such as the NH_(3) yield,selectivity,and stability,is essentially determined by its key component,the photo‐cathode.In this review,the latest progress in the development of photocathode materials employed in PEC‐NRR is evaluated.The fundamental mechanisms and essential features required for the PEC‐NRR are introduced,followed by a discussion of various types of photocathode materials,such as oxides,sulfides,selenides,black silicon,and black phosphorus.In particular,the PEC‐NRR reac‐tion mechanisms associated with these photocathode materials are reviewed in detail.Finally,the present challenges and future opportunities related to the further development of PEC‐NRR are also discussed.This review aims to improve the understanding of PEC‐NRR photocathode materials while also shedding light on the new concepts and significant innovations in this field.
基金the financial support from the National Natural Science Foundation of China (52076045)the Ministry of Science and Technology of China (2019YFC1906700, 2018YFC1902600)the support from “Zhishan Scholar” of Southeast University。
文摘Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene(hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction(NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dualatom catalysts for NRR.
基金supported by Australian Research Council (DP210103892)Australian Research Council for the award of Future Fellowship (FT170100224)。
文摘Ammonia(NH3), a carbon-free hydrogen carrier, is an important commodity for the food supply chain owing to its high energy capacity and ease of storage and transport. The Haber-Bosch process is currently the favored industrial method for large-scale ammonia production but requires energy-intensive and sophisticated infrastructure which hampers its utilization in a sustainable and decentralized system of manufacture.The electrochemical nitrogen reduction reaction(eNRR) at ambient conditions holds great potential for sustainable production of ammonia using electricity generated from renewable energy sources such as solar and wind. However, this approach is limited by a low rate of ammonia production with high overpotential and the competing hydrogen evolution reaction(HER). For a better understanding and utilization of eNRR as a sustainable process, insight into rational catalyst design and mechanistic evaluations by a theoretically-directed experimental approach is imperative. Herein, recent insights into rational catalyst design and mechanisms, based on intrinsic and extrinsic catalytic activity are articulated.Following the elucidation of basic principles and mechanisms, a framework supplied by theoretical studies that lead to the optimal selection and development of eNRR catalysts is presented. Following a discussion of recently developed electrocatalysts for eNRR, we outline various recently-used theoretical and experimental methodologies to improve the intrinsic and extrinsic catalytic activity of advanced electrocatalysts.This review is anticipated to contribute to the development of active, selective, and efficient catalysts for nitrogen reduction.
基金financially supported by the National Key Research and Development Program of China(No.2018YFB0704300)the National Natural Science Foundation of China(Project Nos.21776248,21676246,and 21803074)+2 种基金Ning Bo S&T Innovation 2025 Major Special Programme(No.2018B10016)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR17B060003)Fundamental Research Funds for the Central Universities(Grant No.2020XZZX002-07)。
文摘Electrochemical nitrogen reduction reaction(NRR)is one of the most promising alternatives to the traditional Haber-Bosch process.Designing efficient electrocatalysts is still challenging.Inspired by the recent experimental and theoretical advances on single-cluster catalysts(SCCs),we systematically investigated the catalytic performance of various triple-transition-metal-atom clusters anchored on nitrogen-doped graphene for NRR through density functional theory(DFT)calculation.Among them,Mn_(3)-N4,Fe_(3)-N4,Co_(3)-N4,and Mo_(3)-N4 were screened out as electrocatalysis systems composed of non-noble metal with high activity,selectivity,stability,and feasibility.Particularly,the Co_(3)-N4 possesses the highest activity with a limiting potential of-0.41 V through the enzymatic mechanism.The outstanding performance of Co_(3)-N4 can be attributed to the unique electronic structure leading to strong π backdonation,which is crucial in effective N_(2) activation.This work not only predicts four efficient non-noble metal electrocatalysts for NRR,but also suggest the SCCs can serve as potential candidates for other important electrochemical reactions.
文摘The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemical NRR presents several practical challenges,including sluggish reaction and low selectivity.Here,bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers.It could accelerate the kinetics of N_(2)-to-NH_(3) electrochemical conversion and possess better electrochemical NRR selectivity.This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.
文摘Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation of sustainable NH_(3)production.Herein,using ruthenium-sulfur-carbon(Ru-S-C)catalyst as a prototype,we show that the Ru/S dual-site cooperates to catalyse eletrocatalytic nitrogen reduction reaction(eNRR)at ambient conditions.With the combination of theoretical calculations,in situ Raman spectroscopy,and experimental observation,we demonstrate that such Ru/S dual-site cooperation greatly facilitates the activation and first protonation of N_(2)in the rate-determining step of eNRR.As a result,Ru-S-C catalyst exhibits significantly enhanced eNRR performance compared with the routine Ru-N-C catalyst via a single-site catalytic mechanism.We anticipate that our specifically designed dual-site collaborative catalytic mechanism will open up a new way to offers new opportunities for advancing sustainable NH_(3)production.
基金supported by the National Natural Science Foundation of China(51425301,U1601214,51573013,51773092 and 51772147,21475041,21675050,20405142,21305041)Research Foundation of State Key Lab(ZK201805)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2018B294)
文摘Catalytic reduction of molecular dinitrogen(N_(2))to ammonia(NH_(3))is one of the most important and challenging industrial reactions.Electrochemical reduction is considered as an energy-saving technology for artificial ambient nitrogen fixation,which is emerging as an optimal potential sustainable strategy to substitute for the Haber–Bosch process.However,this process demands efficient catalysts for the N_(2)reduction reaction(NRR).Here,by means of first-principles calculations,we systematically explored the potential electrocatalytic performance of single transition metal atoms(Pd,Ag,Rh,Cu,Ti,Mo,Mn,Zn,Fe,Co,Ru,and Pt)embedded in monolayer defective boron phosphide(TMs/BP)monolayer with a phosphorus monovacancy for ambient NH_(3)production.Among them,the Mo/BP exhibits the best catalytic performance for ambient reduction of N_(2)through the typical enzymatic and consecutive reaction pathways with an activation barrier of 0.68 e V,indicating that Mo/BP is an efficient catalyst for N_(2)fixation.We believe that this work could provide a new avenue of ambient NH_(3)synthesis by using the designed single-atom electrocatalysts.
文摘The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.