In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equati...In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.展开更多
By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equ...By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.展开更多
The generalized transformation method is utilized to solve three-dimensional Nizhnik-Novikov-Veselov equation and construct a series of new exact solutions including kink-shaped and bell-shaped soliton solutions, trig...The generalized transformation method is utilized to solve three-dimensional Nizhnik-Novikov-Veselov equation and construct a series of new exact solutions including kink-shaped and bell-shaped soliton solutions, trigonometric function solutions, and Jacobi elliptic doubly periodic solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh methods and Jacobi function method, the method we used here gives more general exact solutions without much extra effort.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
One new solving expression is built for Nizhnik-Novikov-Veselov system in the paper. Through corresponding auxiliary equation arrangement, more than 150 analytical solutions of elementary and Jacobi elliptic functions...One new solving expression is built for Nizhnik-Novikov-Veselov system in the paper. Through corresponding auxiliary equation arrangement, more than 150 analytical solutions of elementary and Jacobi elliptic functions are obtained so that the NNV system has a wider range of physical meaning. At the same time, the existence and uniqueness of this systematic solution are discussed by fixed point theory of partially ordered space. The expression of the unique solution could be gained if making use of the technique of computer.展开更多
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000 .
文摘In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.
文摘By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘The generalized transformation method is utilized to solve three-dimensional Nizhnik-Novikov-Veselov equation and construct a series of new exact solutions including kink-shaped and bell-shaped soliton solutions, trigonometric function solutions, and Jacobi elliptic doubly periodic solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh methods and Jacobi function method, the method we used here gives more general exact solutions without much extra effort.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
文摘One new solving expression is built for Nizhnik-Novikov-Veselov system in the paper. Through corresponding auxiliary equation arrangement, more than 150 analytical solutions of elementary and Jacobi elliptic functions are obtained so that the NNV system has a wider range of physical meaning. At the same time, the existence and uniqueness of this systematic solution are discussed by fixed point theory of partially ordered space. The expression of the unique solution could be gained if making use of the technique of computer.