通过对社会集群信息网络(Social Information Network,SIN)的分析,获取现实世界中特定目标的人际关系和社群结构,是社会集群信息网络研究的一个重要方向。这种研究在刑侦司法领域具有重大意义,能够使办案人员在不进行物理抓捕/监视的情...通过对社会集群信息网络(Social Information Network,SIN)的分析,获取现实世界中特定目标的人际关系和社群结构,是社会集群信息网络研究的一个重要方向。这种研究在刑侦司法领域具有重大意义,能够使办案人员在不进行物理抓捕/监视的情况下描绘出犯罪组织内部结构,进而找到犯罪组织核心成员。文章基于现有取证领域的相关研究,结合机器学习神经网络部分算法,提出一个网络取证工具Vec2Rank-CrimeNet,并以真实的犯罪数据作为实验数据,给出其在解决实际问题时的效果。展开更多
以深度学习框架为基础,提出了一种时空联合供水管网漏损检测模型。该模型首先运用Node2Vec算法求解不同时间段内节点特征;其次,通过模糊C-均值聚类法,利用管网模型节点特征进行分区。最后,以不同时间段的压力敏感度作为输入,漏损位置的...以深度学习框架为基础,提出了一种时空联合供水管网漏损检测模型。该模型首先运用Node2Vec算法求解不同时间段内节点特征;其次,通过模糊C-均值聚类法,利用管网模型节点特征进行分区。最后,以不同时间段的压力敏感度作为输入,漏损位置的分区号作为标签,通过深度信念神经网络进行训练,并通过训练后的模型对管网漏损位置进行检测。在实例分析中,以A市实际供水管网拓扑结构进行验证,利用MATLAB-Open Water Analytics toolbox联合编程建模,结果表明,各个时间段的检测效果均较优,正确率均达到为80%以上。因此,该模型能够有效地检测管网漏损。展开更多
文摘通过对社会集群信息网络(Social Information Network,SIN)的分析,获取现实世界中特定目标的人际关系和社群结构,是社会集群信息网络研究的一个重要方向。这种研究在刑侦司法领域具有重大意义,能够使办案人员在不进行物理抓捕/监视的情况下描绘出犯罪组织内部结构,进而找到犯罪组织核心成员。文章基于现有取证领域的相关研究,结合机器学习神经网络部分算法,提出一个网络取证工具Vec2Rank-CrimeNet,并以真实的犯罪数据作为实验数据,给出其在解决实际问题时的效果。
文摘以深度学习框架为基础,提出了一种时空联合供水管网漏损检测模型。该模型首先运用Node2Vec算法求解不同时间段内节点特征;其次,通过模糊C-均值聚类法,利用管网模型节点特征进行分区。最后,以不同时间段的压力敏感度作为输入,漏损位置的分区号作为标签,通过深度信念神经网络进行训练,并通过训练后的模型对管网漏损位置进行检测。在实例分析中,以A市实际供水管网拓扑结构进行验证,利用MATLAB-Open Water Analytics toolbox联合编程建模,结果表明,各个时间段的检测效果均较优,正确率均达到为80%以上。因此,该模型能够有效地检测管网漏损。