In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of ...In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of nonlinear random Volterraintegral equations and for the Cauchy problem of a system of nonlinear random differential equations. The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained Our theorems improve and generalize the corresponding results of Vaughn Lakshmikantham Lakshmidantham-Leela De blasi-Myjak and Ding展开更多
Mathematical modeling of microbial electrochemical cells (MXCs) for both microbial fuel cell and microbial electrolysis cell is discussed. The model is based on the system of reaction diffusion of reaction-diffusion e...Mathematical modeling of microbial electrochemical cells (MXCs) for both microbial fuel cell and microbial electrolysis cell is discussed. The model is based on the system of reaction diffusion of reaction-diffusion equation containing a non-linear term related to substrate consumption rates by electrogeneic and methanogenic microorganism in the bioflim. This paper presents the approximate analytical method to solve the non-linear differential equation that describes the diffusion coupled with acetate (substrate) consumption rates. Simple analytical expressions for the concentrations of acetate and methane have been derived for all experimental values of bulk concentration, distributions of microbial volume fraction, local potential in the biofilm and biofilm thickness. In addition, sensitivity of the parameters on concentrations is also discussed. Our analytical results are also validated with the numerical results and limiting cases results. Further, a graphical procedure for estimating the kinetic parameters is also suggested.展开更多
文摘In this paper we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Thenb, by using the theorem. wegive the existence criteria of solutions for a systems of nonlinear random Volterraintegral equations and for the Cauchy problem of a system of nonlinear random differential equations. The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained Our theorems improve and generalize the corresponding results of Vaughn Lakshmikantham Lakshmidantham-Leela De blasi-Myjak and Ding
文摘Mathematical modeling of microbial electrochemical cells (MXCs) for both microbial fuel cell and microbial electrolysis cell is discussed. The model is based on the system of reaction diffusion of reaction-diffusion equation containing a non-linear term related to substrate consumption rates by electrogeneic and methanogenic microorganism in the bioflim. This paper presents the approximate analytical method to solve the non-linear differential equation that describes the diffusion coupled with acetate (substrate) consumption rates. Simple analytical expressions for the concentrations of acetate and methane have been derived for all experimental values of bulk concentration, distributions of microbial volume fraction, local potential in the biofilm and biofilm thickness. In addition, sensitivity of the parameters on concentrations is also discussed. Our analytical results are also validated with the numerical results and limiting cases results. Further, a graphical procedure for estimating the kinetic parameters is also suggested.