期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
面向自然场景文本检测的改进NMS算法 被引量:8
1
作者 杨有为 周刚 《计算机工程与应用》 CSCD 北大核心 2022年第1期204-208,共5页
近些年来,卷积神经网络算法在自然场景文本检测效果上较传统算法已经有了很大提升,但如何有效处理神经网络输出层候选框仍然值得研究。非极大值抑制算法(non-maximum suppression,NMS)通过选择最高置信度候选框作为检测结果,往往容易对... 近些年来,卷积神经网络算法在自然场景文本检测效果上较传统算法已经有了很大提升,但如何有效处理神经网络输出层候选框仍然值得研究。非极大值抑制算法(non-maximum suppression,NMS)通过选择最高置信度候选框作为检测结果,往往容易对较长文本以及混叠文本区域检测失效。考虑到该问题,可以将候选框集合进行排序滤波与融合计算,得到更准确的候选框,有效减少上述检测失效的情况。这种方法,可以直接嵌入原有方法中,而不需要改变网络结构或者增加任何训练量。通过在公开数据集上进行实验,对比其他方法,该方法有较大优势。 展开更多
关键词 自然场景文本检测 卷积神经网络 非极大值抑制 排序滤波 融合计算
下载PDF
Suppression of Sup35 amyloid fibril formation by group II chaperonin from <i>Thermoplasma acidophilum</i>
2
作者 Kentaro Noi Aya Kitamura +4 位作者 Hidenori Hirai Kunihiro Hongo Toshihiko Sakurai Tomohiro Mizobata Yasushi Kawata 《American Journal of Molecular Biology》 2012年第3期265-275,共11页
The Group II chaperonin from Thermoplasma acidophilum was added to the in vitro amyloid fibrillation reaction of yeast Sup35NM protein to assess its effects. By measuring the formation of Sup35NM fibrils in real time ... The Group II chaperonin from Thermoplasma acidophilum was added to the in vitro amyloid fibrillation reaction of yeast Sup35NM protein to assess its effects. By measuring the formation of Sup35NM fibrils in real time using the fluorescent dye Thioflavin T, we found that the addition of T. acidophilum-cpn α16, α1, and β1 proteins suppressed fibril formation. Addition of a 0.1 molar-equivalent T. acidophilum-cpn α16 relative to Sup35NM prolonged the initial lag-time of fibril formation and decreased the rate of fibril extension. Addition of 1 or 3 molar-equivalents of T. acidophilum-cpn monomers also produced a similar effect. Delayed addition of these chaperonins after the initial lag phase did not suppress fibril formation. Interestingly, these effects were also observed upon adding only the apical domain segments of α and β-subunits, and we also found that deletion of the helical protrusion in the apical domain of these segments led to an abolishment of the suppression effects. A synthetic peptide whose sequence corresponded to the helical protrusion also displayed a suppression effect, which indicated that archaeal group II chaperonin binds to Sup35NM through the helical protrusion of the apical domain. These findings suggest that group II chaperonin might be actively involved in suppressing amyloid fibril formation, in addition to acting as a protein folding assistant. 展开更多
关键词 Group II CHAPERONIN Monomer Thermoplasma Acidophilum Structure and Function suppression of AMYLOID FIBRIL Sup35nm AMYLOID
下载PDF
基于灰度均值的自适应FAST角点检测优化算法
3
作者 刘艳 李一桐 《电光与控制》 CSCD 北大核心 2024年第2期65-71,91,共8页
光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次... 光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次,依据图像局部灰度均值,在每个像素点检测模板内自适应调整阈值,避免灰度变化影响检测效果;最后,根据柔性非极大值抑制的思想设计角点半径抑制原则,筛选鲁棒性更强的角点。在Inria遥感影像数据集上的实验结果表明,FAST-9-12角点检测速度比FAST-12-16,FAST-9-16两种模板提高22%左右,因自适应阈值的提取方式不易受光照影响,检测准确率分别提高4.16和3.11个百分点,实现了图像特征快速和精准检测。 展开更多
关键词 FAST角点检测 双重模板 自适应阈值 柔性非极大值抑制 角点半径抑制
下载PDF
改进YOLOv5的无人机航拍图像密集小目标检测算法 被引量:4
4
作者 陈佳慧 王晓虹 《计算机工程与应用》 CSCD 北大核心 2024年第3期100-108,共9页
无人机航拍图像中小目标实例多、尺寸变化剧烈且存在密集遮挡等问题,为解决现有目标检测算法难以检测到航拍图像中的小目标物体,提出了一种针对密集小目标的RDS-YOLOv5检测算法。在YOLOv5的三个检测层上新增一个小目标检测层,以保留更... 无人机航拍图像中小目标实例多、尺寸变化剧烈且存在密集遮挡等问题,为解决现有目标检测算法难以检测到航拍图像中的小目标物体,提出了一种针对密集小目标的RDS-YOLOv5检测算法。在YOLOv5的三个检测层上新增一个小目标检测层,以保留更丰富的特征信息,增强网络对小目标特征的提取能力,并改善误检漏检情况;为了提高网络的多尺度特征表征能力以及抑制冲突的产生,设计了具有等级制的残差结构的多尺度特征提取模块C3Res2Block;使用解耦检测头Decoupled Head避免不同任务之间的差异所带来的预测偏差,提升了模型的定位精度和检测精度;采用软化非极大值抑制Soft NMS算法对候选框的置信度进行优化,提高模型对密集小目标的检测精度。通过VisDrone数据集的实验结果表明,与基准模型YOLOv5相比,RDS-YOLOv5在mAP0.5上提升了12.9个百分点,mAP0.5:0.95上提升了10.6个百分点,与目前主流的目标检测算法相比也取得更优的检测精度,能够有效完成无人机航拍图像的密集小目标检测任务。 展开更多
关键词 小目标检测层 残差结构 解耦 软化非极大值抑制 YOLOv5
下载PDF
980nm半导体激光器双布拉格光纤光栅波长锁定器 被引量:8
5
作者 李毅 黄毅泽 +4 位作者 王海方 俞晓静 张虎 张伟 朱慧群 《光学精密工程》 EI CAS CSCD 北大核心 2010年第7期1468-1475,共8页
提出了优化由两个均匀布拉格光纤光栅组成的980nm半导体激光器波长锁定器的方法以满足光纤放大器对半导体激光器的性能要求。运用耦合模理论推导了双布拉格光纤光栅(FBG)的透射率和反射率的解析表达式和波长锁定器增益方程。研究了两光... 提出了优化由两个均匀布拉格光纤光栅组成的980nm半导体激光器波长锁定器的方法以满足光纤放大器对半导体激光器的性能要求。运用耦合模理论推导了双布拉格光纤光栅(FBG)的透射率和反射率的解析表达式和波长锁定器增益方程。研究了两光栅之间的距离、光栅到激光器前端面的距离、光栅折射率、光栅折射率周期、光栅栅长和温度对激光器增益曲线的影响,并通过优化这些参数来达到最佳的锁模性能。测量了带双FBG波长锁定器的非致冷半导体激光器的输出光谱和出纤功率。实验结果表明:高功率非致冷980nm半导体激光器在0~70℃时的波长漂移为0.5nm,边模抑制比达45dB以上,半峰值全宽度<1nm。经优化设计的980nm半导体激光器FBG波长锁定器可满足光纤放大器对非致冷半导体激光器大功率、长寿命、高可靠性、小尺寸等性能的要求。 展开更多
关键词 980nm半导体激光器 双布拉格光纤光栅 波长锁定器 边模抑制比
下载PDF
结合多尺度注意力机制和双向门控循环网络的视频摘要模型
6
作者 闫河 刘灵坤 +2 位作者 黄俊滨 张烨 段思宇 《智能系统学报》 CSCD 北大核心 2024年第2期446-454,共9页
任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来... 任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来获取局部和全局视频序列关键特征,降低注意力值的方差。同时通过并行地引入双向门控循环网络(bidirectional recurrent neural network,BiGRU),二者的输出分别输入到改进的分类回归模块后再将结果进行加性融合,最后利用非极大值抑制(non-maximum suppression,NMS)和核时序分割方法(kernel temporal segmentation,KTS)筛选片段并分割为高质量代表性镜头,通过背包组合优化算法生成最终摘要,从而提出一种结合多尺度注意力机制和双向门控循环网络的视频摘要模型(local and global attentions combine with the BiGRU,LG-RU)。该模型在TvSum和SumMe的标准和增强数据集上进行了对比试验,结果表明该模型取得了更高的F-score,证实了该视频摘要模型保持高准确率的同时可鲁棒地对视频完成摘要。 展开更多
关键词 视频摘要 自注意力机制 重要性分数 长程依赖 计算机视觉 双向门控循环神经网络 非极大值抑制 核时序分割方法
下载PDF
基于改进的Faster RCNN的仪表自动识别方法
7
作者 王欣然 张斌 +1 位作者 湛敏 赵成龙 《机电工程》 CAS 北大核心 2024年第3期532-539,共8页
在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视... 在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视觉几何群网络(VGG)16,进行了网络结构简化;然后,引入了特征金字塔网络(FPN),并将其改进为递归特征金字塔网络后进行了迭代融合,输出了特征图;接着,引入了注意力机制模块,根据特征的重要程度,完成了对输出通道权值的重新分配,增强了Faster RCNN对目标的运算能力;提出了改进非极大值抑制算法(Softer-NMS),通过降低置信度来确定准确的目标候选框;最后,采用Mosaic数据增强技术对可视对象类(VOC)2007数据集进行了扩充,对改进后的Faster RCNN模型进行了仪表自动识别的实验。研究结果表明:在相同工业环境下,与传统的Faster RCNN算法模型相比,改进后的Faster RCNN模型准确率为93.5%,较原模型提高了3.8%,mAP值为92.6%,较原模型提高了3.7%,可见该方法在实际生产中具有较强的鲁棒性与泛化能力,可满足工业上对智能检测的要求。 展开更多
关键词 仪表识别 更快速的区域卷积神经网络 递归特征金字塔网络 注意力机制 非极大值抑制算法 Mosaic数据增强技术
下载PDF
Anchor free与Anchor base算法结合的拥挤行人检测方法 被引量:5
8
作者 谢明鸿 康斌 +1 位作者 李华锋 张亚飞 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1833-1841,共9页
由于精度相对较高,Anchor base算法目前已成为拥挤场景下行人检测的研究热点。但是,该算法需要手工设计锚框,限制了其通用性。同时,单一的非极大值抑制(NMS)筛选阈值作用于不同密度的人群区域会导致一定程度的漏检和误检。为此,该文提... 由于精度相对较高,Anchor base算法目前已成为拥挤场景下行人检测的研究热点。但是,该算法需要手工设计锚框,限制了其通用性。同时,单一的非极大值抑制(NMS)筛选阈值作用于不同密度的人群区域会导致一定程度的漏检和误检。为此,该文提出一种Anchor free与Anchor base检测器相结合的双头检测算法。具体地,先利用Anchor free检测器对图像进行粗检测,将粗检测结果进行自动聚类生成锚框后反馈给区域建议网络(RPN)模块,以代替RPN阶段手工设计锚框的步骤。同时,通过对粗检测结果信息的统计可得到不同区域人群的密度信息。该文设计一个行人头部-全身互监督检测框架,利用头部检测结果与全身的检测结果互相监督,从而有效减少被抑制与漏检的目标实例。提出一种新的NMS算法,该方法可以自适应地为不同密度的人群区域选择合适的筛选阈值,从而最大限度地减少NMS处理引起的误检。所提出的检测器在CrowdHuman数据集和CityPersons数据集进行了实验验证,取得了与目前最先进的行人检测方法相当的性能。 展开更多
关键词 行人检测 Anchor base Anchor free 非极大值抑制
下载PDF
基于改进YOLOv5s电动车头盔的自动检测与识别 被引量:9
9
作者 朱周华 齐琦 《计算机应用》 CSCD 北大核心 2023年第4期1291-1296,共6页
针对目前电动车头盔小目标检测的精度低、鲁棒性差,相关系统不完善等问题,提出了基于改进YOLOv5s的电动车头盔检测算法。所提算法引入卷积块注意力模块(CBAM)和协调注意力(CA)模块,采用改进的非极大值抑制(NMS),即DIoU-NMS(Distance Int... 针对目前电动车头盔小目标检测的精度低、鲁棒性差,相关系统不完善等问题,提出了基于改进YOLOv5s的电动车头盔检测算法。所提算法引入卷积块注意力模块(CBAM)和协调注意力(CA)模块,采用改进的非极大值抑制(NMS),即DIoU-NMS(Distance Intersection over Union-Non Maximum Suppression);同时增加多尺度特征融合检测,并结合密集连接网络改善特征提取效果;最后,建立了电动车驾驶人头盔检测系统。在自建的电动车头盔佩戴数据集上,当交并比(IoU)为0.5时,所提算法的平均精度均值(mAP)比原始YOLOv5s提升了7.1个百分点,召回率(Recall)提升了1.6个百分点。实验结果表明,所提改进的YOLOv5s算法更能满足在实际情况中对电动车及驾驶员头盔的检测精度要求,一定程度上降低了电动车交通事故的发生率。 展开更多
关键词 电动车头盔检测 YOLOv5s 注意力机制 非极大值抑制 多尺度特征检测
下载PDF
基于注意力机制和上下文信息的目标检测算法 被引量:2
10
作者 刘辉 张琳玉 +1 位作者 王复港 何如瑾 《计算机应用》 CSCD 北大核心 2023年第5期1557-1564,共8页
针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的... 针对目标检测过程中存在的小目标漏检问题,提出一种基于注意力机制和多尺度上下文信息的改进YOLOv5目标检测算法。首先,在特征提取结构中加入多尺度空洞可分离卷积模块(MDSCM)以提取多尺度特征信息,在增大感受野的同时避免小目标信息的丢失;其次,在主干网络中添加注意力机制,并在通道信息中嵌入位置感知信息,进一步增强算法的特征表达能力;最后,使用Soft-NMS(Soft-Non-Maximum Suppression)代替YOLOv5使用的非极大值抑制(NMS),降低检测算法的漏检率。实验结果表明,改进算法在PASCAL VOC数据集、DOTA航拍数据集和DIOR光学遥感数据集上的检测精度分别达到了82.80%、71.74%和77.11%,相较于YOLOv5,分别提高了3.70、1.49和2.48个百分点;而且它对图像中小目标的检测效果更好。因此,改进的YOLOv5可以更好地应用到小目标检测场景中。 展开更多
关键词 目标检测 深度可分离卷积 空洞卷积 注意力机制 非极大值抑制
下载PDF
融合注意力机制的输电部件及缺陷检测模型 被引量:1
11
作者 高伟 董云云 +1 位作者 刘军 张兴忠 《计算机工程与设计》 北大核心 2023年第3期929-936,共8页
针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模... 针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模型的数据增广方法,构建样本量为23327的数据集,达到91.37%的检测mAP。实验结果表明,提出模型满足输电线路多目标识别和故障检测的鲁棒性和准确性要求。 展开更多
关键词 SENet模块 Faster RCNN模型 基于面积的非极大值抑制(Aera-nms)算法 无人机巡检 数据增广 SE-Faster RCNN模型 区域生成网络
下载PDF
自适应阈值Harris算法遥感图像配准的FPGA实现
12
作者 汪强 郭来功 《无线互联科技》 2023年第24期110-112,共3页
针对Harris角点检测器响应值R的阈值选择而导致角点失真问题,文章提出了一种基于现场可编程门阵列(FPGA)的自适应Harris角点检测器实现遥感图像的配准方式。该方式依据非最大值抑制(NMS)处理后的响应值对阈值进行实时变化。实验结果显示... 针对Harris角点检测器响应值R的阈值选择而导致角点失真问题,文章提出了一种基于现场可编程门阵列(FPGA)的自适应Harris角点检测器实现遥感图像的配准方式。该方式依据非最大值抑制(NMS)处理后的响应值对阈值进行实时变化。实验结果显示,优化架构在硬件资源仅增加2.76%的情况下,准确率相应提升了8.31%。因此,文章提出的遥感图像配准架构适用于硬件资源有限的平台。 展开更多
关键词 Harris角点检测器 FPGA 非最大值抑制(nms) 遥感图像配准
下载PDF
FS-YOLOv5:轻量化红外目标检测方法 被引量:11
13
作者 黄磊 杨媛 +2 位作者 杨成煜 杨威 李耀华 《计算机工程与应用》 CSCD 北大核心 2023年第9期215-224,共10页
针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPD... 针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPDarknet主干网络来提取特征图像;在原网络CIoU损失函数的基础上引入Power变换,替换为α-CIoU,提高网络对小目标的检测能力;将K-means++聚类算法应用在FLIR红外数据集上重新生成Anchor,最后利用DIoU-NMS替换原网络的NMS后处理方法,改善对遮挡物体的检测能力,降低了模型的漏检率。通过在FLIR红外数据集上的消融实验验证了FS-YOLOv5轻量化算法满足红外场景下的道路目标检测任务,与原网络相比,在平均精度仅降低0.37个百分点的前提下,FS-YOLOv5模型的大小减少了26%,参数量减少了29%,检测速度提升了11 FPS,满足了在不同场景下移动端部署的需求。 展开更多
关键词 轻量化 红外目标检测 损失函数 nms算法 YOLOv5
下载PDF
基于CR-RFPR101的钢板表面缺陷检测 被引量:1
14
作者 李雪露 储茂祥 +1 位作者 杨永辉 刘光虎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第12期1651-1658,共8页
针对钢板表面缺陷种类多、背景复杂、检测精度低等问题,文章首先对钢板表面缺陷数据集进行数据增强,并对原始Cascade区域卷积神经网络(region-basedconvolutional neural netwroks,R-CNN)算法进行改进,将ResNeXt-101-64×4d作为Casc... 针对钢板表面缺陷种类多、背景复杂、检测精度低等问题,文章首先对钢板表面缺陷数据集进行数据增强,并对原始Cascade区域卷积神经网络(region-basedconvolutional neural netwroks,R-CNN)算法进行改进,将ResNeXt-101-64×4d作为Cascade R-CNN算法的骨干网络,优化特征提取模块,利用递归特征金字塔(recursive feature pyramid,RFP)网络以反馈连接的方式进行特征优化,提出一种CR-RFPR101(Cascade R-CNN RFP ResNeXt-101-64×4d)的检测算法,以更好地保留细节和语义信息;同时使用可切换的空洞卷积替换主干网络的卷积层,以改变感受野的方式提高检测性能;最后使用引入软化非极大值抑制算法,保留有效信息,提高识别率。经实验验证,CR-RFPR101算法的检测率为83.4%,比原Cascade R-CNN算法提高了7.3%,满足了钢板表面缺陷检测要求。 展开更多
关键词 缺陷检测 数据增强 递归特征金字塔(RFP) 可切换的空洞卷积 软化非极大值抑制(Soft-nms)
下载PDF
自适应置信度阈值的非限制场景车牌检测算法 被引量:3
15
作者 刘小宇 陈怀新 +2 位作者 刘壁源 林英 马腾 《计算机应用》 CSCD 北大核心 2023年第1期67-73,共7页
针对车牌检测模型泛化性低,在智慧交通的不同应用场景中复用困难的问题,提出一种自适应置信度阈值的非限制场景车牌检测算法。首先,构建多预测头网络模型,利用分割预测头减少模型复用的预处理工作,利用自适应置信度阈值预测头提升模型... 针对车牌检测模型泛化性低,在智慧交通的不同应用场景中复用困难的问题,提出一种自适应置信度阈值的非限制场景车牌检测算法。首先,构建多预测头网络模型,利用分割预测头减少模型复用的预处理工作,利用自适应置信度阈值预测头提升模型的检测能力,并利用多尺度融合机制及边框回归预测头来提升模型的泛化能力;其次,采用可微分二值网络训练方法,利用可微分二值变换联合训练分类置信度及置信度阈值来学习模型参数;最后,利用连通感知非极大值抑制(CANMS)方法提升车牌检测的后处理速度,并引入轻量级网络ResNet18作为特征提取骨干网络,以减少模型参数量,进一步地提高检测速度。实验结果表明,在中国城市停车场数据集(CCPD)的6个不同限制条件特点的场景中,所提算法可获得平均99.5%的准确率与99.8%的召回率,并达到每秒70帧的高效检测速率,优于Faster R-CNN、SSD等锚框类算法的性能;在3个补充场景测试集上,所提算法对不同分辨率、不同拍摄距离、不同拍摄俯仰角等非限制场景下的车牌检测精度均高于90%。可见,所提算法在非限制场景下具备良好的检测性能及泛化能力,可以满足模型复用的要求。 展开更多
关键词 车牌检测 非限制场景 深度神经网络 无锚框检测 置信度阈值 可微分二值变换 非极大值抑制
下载PDF
基于改进YOLO V3的PID目标检测 被引量:2
16
作者 来斌 王东军 +1 位作者 刘彦彤 王颖 《自动化与仪表》 2023年第3期54-58,共5页
为提高工程设计行业人员对PID(process&instrumentation drawing)仪表的统计效率,该文提出一种识别PID的目标检测方法。在YOLO V3网络结构的基础上,进一步融合浅层与深层网络,增加一个针对小目标检测尺度;采用切片原理与随机生成技... 为提高工程设计行业人员对PID(process&instrumentation drawing)仪表的统计效率,该文提出一种识别PID的目标检测方法。在YOLO V3网络结构的基础上,进一步融合浅层与深层网络,增加一个针对小目标检测尺度;采用切片原理与随机生成技术进行数据增强,形成自建数据集PID-data;通过增加一个阈值,对软化的非极大值抑制Soft-NMS(soft non-maximum suppression)算法进行改进。实验结果显示,类别平均精准度等性能指标有明显提升,表明改进后的算法优化了YOLO V3网络结构模型,达到了短时间内识别大量PID中仪表的目的。 展开更多
关键词 PID 目标检测 YOLO V3 数据增强 PID-data Soft-nms
下载PDF
Area-based non-maximum suppression algorithm for multi-object fault detection 被引量:5
17
作者 Jieyin BAI Jie ZHU +2 位作者 Rui ZHAO Fengqiang GU Jiao WANG 《Frontiers of Optoelectronics》 EI CSCD 2020年第4期425-432,共8页
Unmanned aerial vehicle(UAV)photography has become the main power system inspection method;however,automated fault detection remains a major challenge.Conventional algorithms encounter difficulty in processing all the... Unmanned aerial vehicle(UAV)photography has become the main power system inspection method;however,automated fault detection remains a major challenge.Conventional algorithms encounter difficulty in processing all the detected objects in the power transmission lines simultaneously.The object detection method involving deep learning provides a new method for fault detection.However,the traditional non-maximum suppression(NMS)algorithm fails to delete redundant annotations when dealing with objects having two labels such as insulators and dampers.In this study,we propose an area-based non-maximum suppression(A-NMS)algorithm to solve the problem of one object having multiple labels.The A-NMS algorithm is used in the fusion stage of cropping detection to detect small objects.Experiments prove that A-NMS and cropping detection achieve a mean average precision and recall of 88.58%and 91.23%,respectively,in case of the aerial image datasets and realize multi-object fault detection in aerial images. 展开更多
关键词 fault detection area-based non-maximum suppression(A-nms) cropping detection
原文传递
YOLO-Banana:An Effective Grading Method for Banana Appearance Quality
18
作者 Dianhui Mao Xuesen Wang +3 位作者 Yiming Liu Denghui Zhang Jianwei Wu Junhua Chen 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期363-373,共11页
The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana ... The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana appearance quality based on the number of banana defect points.Due to the minor and dense defects on the surface of bananas,existing detection algorithms have poor detection results and high missing rates.To address this,we propose a densitybased spatial clustering of applications with noise(DBSCAN)and K-means fusion clustering method that utilizes refined anchor points to obtain better initial anchor values,thereby enhancing the network’s recognition accuracy.Moreover,the optimized progressive aggregated network(PANet)enables better multi-level feature fusion.Additionally,the non-maximum suppression function is replaced with a weighted non-maximum suppression(weighted NMS)function based on distance intersection over union(DIoU).Experimental results show that the model’s accuracy is improved by 2.3%compared to the original YOLOv5 network model,thereby effectively grading the banana appearance quality. 展开更多
关键词 YOLOv5 banana appearance grading clustering algorithm weighted non-maximum suppression(weighted nms) progressive aggregated network(PANet)
下载PDF
CARVING-DETC: A network scaling and NMS ensemble for Balinese carving motif detection method
19
作者 Wayan Agus Surya Darma Nanik Suciati Daniel Siahaan 《Visual Informatics》 EI 2023年第3期1-10,共10页
Balinese carvings are cultural objects that adorn sacred buildings. The carvings consist of several motifs,each representing the values adopted by the Balinese people. Detection of Balinese carving motifs ischallengin... Balinese carvings are cultural objects that adorn sacred buildings. The carvings consist of several motifs,each representing the values adopted by the Balinese people. Detection of Balinese carving motifs ischallenging due to the unavailability of a Balinese carving dataset for detection tasks, high variance,and tiny-size carving motifs. This research aims to improve carving motif detection performance onchallenging Balinese carving motifs detection task through a modification of YOLOv5 to support adigital carving conservation system. We proposed CARVING-DETC, a deep learning-based Balinesecarving detection method consisting of three steps. First, the data generation step performs dataaugmentation and annotation on Balinese carving images. Second, we proposed a network scalingstrategy on the YOLOv5 model and performed non-maximum suppression (NMS) on the modelensemble to generate the most optimal predictions. The ensemble model utilizes NMS to producehigher performance by optimizing the detection results based on the highest confidence score andsuppressing other overlap predictions with a lower confidence score. Third, performance evaluation onscaled-YOLOv5 versions and NMS ensemble models. The research findings are beneficial in conservingthe cultural heritage and as a reference for other researchers. In addition, this study proposed a novelBalinese carving dataset through data collection, augmentation, and annotation. To our knowledge,it is the first Balinese carving dataset for the object detection task. Based on experimental results,CARVING-DETC achieved a detection performance of 98%, which outperforms the baseline model. 展开更多
关键词 Balinese carving Object detection Network scaling non-maximum suppression Ensemble model
原文传递
基于余弦相似度的分类定位一致性损失
20
作者 叶英杰 窦杰 《电光与控制》 CSCD 北大核心 2023年第11期41-48,共8页
主流的目标检测模型将检测分为分类和定位两个子任务,分类和定位各自具有独立的子网络,且在训练过程中采用互相独立的损失函数。这种模型结构和训练方式忽略了分类和定位之间的相互联系,使得模型预测的类别得分无法体现预测框的定位质量... 主流的目标检测模型将检测分为分类和定位两个子任务,分类和定位各自具有独立的子网络,且在训练过程中采用互相独立的损失函数。这种模型结构和训练方式忽略了分类和定位之间的相互联系,使得模型预测的类别得分无法体现预测框的定位质量,进一步导致高定位质量的预测在非极大值抑制(NMS)阶段被低定位质量的预测抑制,损害了模型的检测精度。针对该问题,提出了一种一致性损失的概念,该损失通过在训练过程中约束模型预测的类别得分和定位质量的排名相似度,提升了二者的一致程度。基于FCOS-ResNet50模型与PASCAL VOC数据集,所提的损失函数能够提升约1.3个百分点的mAP_(0.5)、4.3个百分点的mAP_(75)和5.4个百分点的mAP_(90)。 展开更多
关键词 目标检测 损失函数 非极大值抑制 分类定位一致性 余弦相似度
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部