In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introductin...In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.展开更多
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e...Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.展开更多
This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two class...This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.展开更多
The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov p...The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat...In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.展开更多
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference...From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.展开更多
Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in th...Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.展开更多
Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak sig...Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.展开更多
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t...In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.展开更多
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur...The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.展开更多
Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the leas...Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.展开更多
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ...As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.展开更多
Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong s...Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.展开更多
Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread atte...Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread attention.The lack of datasets in real vehicle test environments has always been a bottleneck in the research of driver fatigue in electric vehicles.Therefore,this study establishes a dataset from real vehicle test,applies the Bayesian optimization support vector machine(BOA-SVM)algorithm to take features of electromyography(EMG)and electrocardiography(ECG)signals as input and develop an early warning model for driving fatigue detection.Firstly,the driver’s EMG and ECG signals are collected through real vehicle testing experiments and then combined with the driver’s subjective fatigue evaluation scores to establish the dataset.Secondly,the study establishes a driver fatigue early warning model for emergency situations.Time-domain and frequency-domain features are extracted from the EMG signals.Principal component analysis(PCA)is applied for dimensionality reduction of these features.The experimental results show that based on the input of dimensionality reduced EMG features and ECG features,the BOA-SVM algorithm achieved an accuracy of 94.4%in classification.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and...Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.展开更多
This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysi...This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysis.In this study,speech samples are categorized for both training and testing purposes based on their geographical origin.Category 1 comprises speech samples from speakers outside of India,whereas Category 2 comprises live-recorded speech samples from Indian speakers.Testing speech samples are likewise classified into four distinct sets,taking into consideration both geographical origin and the language spoken by the speakers.Significantly,the results indicate a noticeable difference in gender identification accuracy among speakers from different geographical areas.Indian speakers,utilizing 52 Hindi and 26 English phonemes in their speech,demonstrate a notably higher gender identification accuracy of 85.75%compared to those speakers who predominantly use 26 English phonemes in their conversations when the system is trained using speech samples from Indian speakers.The gender identification accuracy of the proposed model reaches 83.20%when the system is trained using speech samples from speakers outside of India.In the analysis of speech signals,Mel Frequency Cepstral Coefficients(MFCCs)serve as relevant features for the speech data.The deep learning classification algorithm utilized in this research is based on a Bidirectional Long Short-Term Memory(BiLSTM)architecture within a Recurrent Neural Network(RNN)model.展开更多
基金supported by the National Natural Science Foundation of China NSFC under Grant No.10972192
文摘In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.
文摘Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
文摘This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.
基金The Joint Grant of the National Academy of Sciences of Ukraine(NASU)and the Russian Foundation for Basic Research(RFBR)2012-2013(No.12-02-90425)The Task Comprehensive Program of NAS U on the Scientific Space Research 2012-2016
文摘The possibility of describing the time-dependent processes of scattering by underlying surfaces and the clear sky, as well as the seasonal behaviour of the refractive index of troposphere by using nested semi-Markov processes has been consid- ered. Local Gaussian models can be used to describe the process inside each phase state. The possibility of describing the sta- tistics of reflections from the sea and the refractive index by using Kravchenko finite functions has been shown for the first time.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.
基金supported by the National Natural Science Foundation of China (62261047,62066040)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075)+3 种基金the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637)PhD Research Start-up Foundation of Tongren University (trxyDH1710)Tongren Science and Technology Planning Project ((2018)22)。
文摘In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.
文摘From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.
基金supported by the China Postdoctoral Science Foundation(Grant Number 2023M742598).
文摘Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.
文摘Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.
基金supported by Natural Science Foundation of China(62071262)the K.C.Wong Magna Fund at Ningbo University.
文摘In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.
文摘The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.
基金funded by National Natural Science Foundation of China(Grant No.11803065)Natural Science Foundation of Shanghai(Grant No.22ZR1472800)。
文摘Studying the seasonal deformation in GPS time series is important to interpreting geophysical contributors and identifying unmodeled and mismodeled seasonal signals.Traditional seasonal signal extraction used the least squares method,which models seasonal deformation as a constant seasonal amplitude and phase.However,the seasonal variations are not constant from year to year,and the seasonal amplitude and phase are time-variable.In order to obtain the time-variable seasonal signal in the GPS station coordinate time series,singular spectrum analysis(SSA)is conducted in this study.We firstly applied the SSA on simulated seasonal signals with different frequencies 1.00 cycle per year(cpy),1.04 cpy and with time-variable amplitude are superimposed.It was found that SSA can successfully obtain the seasonal variations with different frequencies and with time-variable amplitude superimposed.Then,SSA is carried out on the GPS observations in Yunnan Province.The results show that the time-variable amplitude seasonal signals are ubiquitous in Yunnan Province,and the timevariable amplitude change in 2019 in the region is extracted,which is further explained by the soil moisture mass loading and atmospheric pressure loading.After removing the two loading effects,the SSA obtained modulated seasonal signals which contain the obvious seasonal variations at frequency of 1.046 cpy,it is close with the GPS draconitic year,1.040 cpy.Hence,the time-variable amplitude changes in 2019 and the seasonal GPS draconitic year in the region could be discriminated successfully by SSA in Yunnan Province.
基金supported by the National Natural Science Foundation of China(61771154)the Fundamental Research Funds for the Central Universities(3072022CF0601)supported by Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin,China.
文摘As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32241023 and 92254306)the Fund from the Tsinghua–Peking Joint Center for Life SciencesBeijing Frontier Research Center for Biological Structure。
文摘Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.
基金Supported by the Key Research and Development Program of Ningbo(No.2023Z218)the Joint Funds of the National Natural Science Founda-tion of China(No.U21A20121)+1 种基金the National Natural Science Foundation of China(No.51775325)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread attention.The lack of datasets in real vehicle test environments has always been a bottleneck in the research of driver fatigue in electric vehicles.Therefore,this study establishes a dataset from real vehicle test,applies the Bayesian optimization support vector machine(BOA-SVM)algorithm to take features of electromyography(EMG)and electrocardiography(ECG)signals as input and develop an early warning model for driving fatigue detection.Firstly,the driver’s EMG and ECG signals are collected through real vehicle testing experiments and then combined with the driver’s subjective fatigue evaluation scores to establish the dataset.Secondly,the study establishes a driver fatigue early warning model for emergency situations.Time-domain and frequency-domain features are extracted from the EMG signals.Principal component analysis(PCA)is applied for dimensionality reduction of these features.The experimental results show that based on the input of dimensionality reduced EMG features and ECG features,the BOA-SVM algorithm achieved an accuracy of 94.4%in classification.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金supported by the National Natural Science Foundation of China,Nos.62027812(to HS),81771470(to HS),and 82101608(to YL)Tianjin Postgraduate Research and Innovation Project,No.2020YJSS122(to XD)。
文摘Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
文摘This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions,employing a deep learning classification algorithm for speech signal analysis.In this study,speech samples are categorized for both training and testing purposes based on their geographical origin.Category 1 comprises speech samples from speakers outside of India,whereas Category 2 comprises live-recorded speech samples from Indian speakers.Testing speech samples are likewise classified into four distinct sets,taking into consideration both geographical origin and the language spoken by the speakers.Significantly,the results indicate a noticeable difference in gender identification accuracy among speakers from different geographical areas.Indian speakers,utilizing 52 Hindi and 26 English phonemes in their speech,demonstrate a notably higher gender identification accuracy of 85.75%compared to those speakers who predominantly use 26 English phonemes in their conversations when the system is trained using speech samples from Indian speakers.The gender identification accuracy of the proposed model reaches 83.20%when the system is trained using speech samples from speakers outside of India.In the analysis of speech signals,Mel Frequency Cepstral Coefficients(MFCCs)serve as relevant features for the speech data.The deep learning classification algorithm utilized in this research is based on a Bidirectional Long Short-Term Memory(BiLSTM)architecture within a Recurrent Neural Network(RNN)model.