Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satis...Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.展开更多
Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The prob...Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.展开更多
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth...The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.展开更多
A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs...A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.展开更多
In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative ga...In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.展开更多
Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculat...Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.展开更多
The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access ...The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.展开更多
Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the ...Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.展开更多
The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy n...The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV...Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV swarm non-cooperative game model based on Multi-Agent Deep Reinforcement Learning(MADRL),where the state space and action space are constructed to adapt the real features of UAV swarm air-to-air combat.The multi-agent particle environment is employed to generate an UAV combat scene with continuous observation space.Some recently popular MADRL methods are compared extensively in the UAV swarm noncooperative game model,the results indicate that the performance of Multi-Agent Soft Actor-Critic(MASAC)is better than that of other MADRL methods by a large margin.UAV swarm employing MASAC can learn more effective policies,and obtain much higher hit rate and win rate.Simulations under different swarm sizes and UAV physical parameters are also performed,which implies that MASAC owns a well generalization effect.Furthermore,the practicability and convergence of MASAC are addressed by investigating the loss value of Q-value networks with respect to individual UAV,the results demonstrate that MASAC is of good practicability and the Nash equilibrium of the UAV swarm non-cooperative game under incomplete information can be reached.展开更多
In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each s...In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.展开更多
expenditures and operational expenditures (OPEX) (CAPEX) for operator, the coverage and capacity optimization (CCO) is one of the key use cases in long term evolution (LTE) self-organization network (SON). I...expenditures and operational expenditures (OPEX) (CAPEX) for operator, the coverage and capacity optimization (CCO) is one of the key use cases in long term evolution (LTE) self-organization network (SON). In LTE system, some factors (e.g. load, traffic type, user distribution, uplink power setting, inter-cell interference, etc.) limit the coverage and capacity performance. From the view of single cell, it always pursuits maximize performance of coverage and capacity by optimizing the uplink power setting and intra-cell resource allocation, but it may result in decreasing the performance of its neighbor cells. Therefore, the benefit of every cell conflicts each other. In order to tradeoff the benefit of every cell and maximize the performance of the whole network, this paper proposes a multi-cell uplink power allocation scheme based on non-cooperative games. The scheme aims to make the performance of coverage and capacity balanced by the negotiation of the uplink power parameters among multi-cells. So the performance of every cell can reach the Nash equilibrium, making it feasible to reduce the inter-cell interference by setting an appropriate uplink power parameter. Finally, the simulation result shows the proposed algorithm can effectively enhance the performance of coverage and capacity in LTE network.展开更多
The heating,ventilation,and air-conditioning(HVAC)systems account for about half of the building energy consumption.The optimization methodology access to optimal control strategies of chiller plant has always been of...The heating,ventilation,and air-conditioning(HVAC)systems account for about half of the building energy consumption.The optimization methodology access to optimal control strategies of chiller plant has always been of great concern as it significantly contributes to the energy use of the whole HVAC system.Given that conventional centralized optimization methods relying on a central operator may suffer from dimensionality and a tremendous calculation burden,and show poorer flexibility when solving complex optimization issues,in this paper,a novel distributed optimization approach is presented for chiller plant control.In the proposed distributed control scheme,both trade-offs of coupled subsystems and optimal allocation among devices of the same subsystem are considered by developing a double-layer optimization structure.Non-cooperative game is used to mathematically formulate the interaction between controlled components as well as to divide the initial system-scale nonlinear optimization problem into local-scale ones.To solve these tasks,strategy updating mechanisms(PSO and IPM)are utilized.In this way,the approximate global optimal controlled variables of devices in the chiller plant can be obtained in a distributed and local-knowledge-enabled way without neither global information nor the central workstation.Furthermore,the existence and effectiveness of the proposed distributed scheme were verified by simulation case studies.Simulation results indicate that,by using the proposed distributed optimization scheme,a significant energy saving on a typical summer day can be obtained(1809.47 kW·h).The deviation from the central optimal solution is 3.83%.展开更多
In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-coopera...In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-cooperative game.Then we show the concept of Nash equilibrium(NE) and investigate its existence and uniqueness in detail.To enhance the performance of multi-cell OFDMA system,the further improvement process based on NE is given.Several adjustable parameters are set to make the system achieve different tradeoffs between the total capacity and complexity.Simulation results show that the proposed scheme can greatly improve the system performance comparing with conventional scheme.展开更多
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as ...In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as the dynamic of each users’ energy state in smart gird can be described based on a differential equation. Concept of electricity sharing is introduced to achieve load shift of main users from the high price hours to the low price hours. Nash equilibrium is given based on the Hamilton equation and the effectiveness of the proposed model is verified based on the numerical simulation results.展开更多
In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, inc...In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnera...Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnerable and very weak to security threats. In this article, the interaction between vulnerable nodes and malicious nodes in the fog computing is investigated as a non-cooperative differential game. The complex decision making process is reviewed and analyzed. To solve the game, a fictitious play-based algorithm is which the vulnerable node and the malicious nodes reach a feedback Nash equilibrium. We attain optimal strategy of energy consumption with Qo S guarantee for the system, which are conveniently operated and suitable for fog nodes. The system simulation identifies the propagation of malicious nodes. We also determine the effects of various parameters on the optimal strategy. The simulation results support a theoretical foundation to limit malicious nodes in fog computing, which can help fog service providers make the optimal dynamic strategies when different types of nodes dynamically change their strategies.展开更多
基金supported by the National Natural Science Foundation of China(71671035)。
文摘Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.
基金supported in part by the Project of Liaoning BaiQianWan Talents ProgramunderGrand No.2021921089the Science Research Foundation of EducationalDepartment of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant 2021200.
文摘The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.
基金This work was supported in part by the Project of Liaoning BaiQianWan Talents Program under Grand No.2021921089the Science Research Foundation of Educational Department of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001+2 种基金the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017the special project of SUT on serving local economic and social development decision-making under Grant FWDFGD2021019the“Double First-Class”Construction Project in Liaoning Province under Grant ZDZRGD2020037.
文摘A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.
基金the National Natural Science Foundation of China (No.60372055)the National Doctoral Foundation of China (No.20030698027)
文摘In order to better accommodate heterogeneous quality of service (QoS) in wireless networks, an algorithm called QoS-aware power and admission controls (QAPAC) is proposed. The system is modeled as a non-cooperative game where the users adjust their transmit powers to maximize the utility, thus restraining the interferences. By using adaptive utility functions and tunable pricing parameters according to QoS levels, this algorithm can well meet different QoS requirements and improve system capacity compared with those that ignore the QoS differences.
基金This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no.701697Major Program of the National Social Science Fund of China(Grant No.17ZDA092)+2 种基金Basic Research Programs(Natural Science Foundation)of Jiangsu Province(BK20180794)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)the PAPD fund.
文摘Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes.“Straggling”tasks,however,have a serious impact on task allocation and scheduling in a Hadoop system.Speculative Execution(SE)is an efficient method of processing“Straggling”Tasks by monitoring real-time running status of tasks and then selectively backing up“Stragglers”in another node to increase the chance to complete the entire mission early.Present speculative execution strategies meet challenges on misjudgement of“Straggling”tasks and improper selection of backup nodes,which leads to inefficient implementation of speculative executive processes.This paper has proposed an Optimized Resource Scheduling strategy for Speculative Execution(ORSE)by introducing non-cooperative game schemes.The ORSE transforms the resource scheduling of backup tasks into a multi-party non-cooperative game problem,where the tasks are regarded as game participants,whilst total task execution time of the entire cluster as the utility function.In that case,the most benefit strategy can be implemented in each computing node when the game reaches a Nash equilibrium point,i.e.,the final resource scheduling scheme to be obtained.The strategy has been implemented in Hadoop-2.x.Experimental results depict that the ORSE can maintain the efficiency of speculative executive processes and improve fault-tolerant and computation performance under the circumstances of Normal Load,Busy Load and Busy Load with Skewed Data.
基金Supported by the National Natural Science Foundation of China(No.61272120)the Science and Technology Project of Xi'an(No.CXY1117(5))
文摘The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.
文摘Energy saving income distribution mode is of great significance to the energy industry.With the continuous application of new technologies,the problem of excess energy saving income distribution has become one of the obstacles to the appreciation of energy performance.At present,the distribution of risk and income is mainly based on the contribution of risk and income,which has some limitations.The benefit distribution of energy saving negotiation between energy saving service companies and clients can be regarded as a bargaining process where an effective range satisfying both parties can be obtained.This provides a new perspective in solving the problem of excess energy saving income distribution in energy management contract projects.
基金supported by the National Natural Science Foundation of China (70771010)
文摘The fuzzy non-cooperative game with fuzzy payoff function is studied. Based on fuzzy set theory with game theory, the fuzzy Nash equilibrium of fuzzy non-cooperative games is proposed. Most of researchers rank fuzzy number by its center of gravity or by the real number with its maximal membership. By reducing fuzzy number into a real number, we lose much fuzzy information that should be kept during the operations between fuzzy numbers. The fuzzy quantities or alternatives are ordered directly by Yuan's binary fuzzy ordering relation. In doing so, the existence of fuzzy Nash equilibrium for fuzzy non-cooperative games is shown based on the utility function and the crisp Nash theorem. Finally, an illustrative example in traffic flow patterns of equilibrium is given in order to show the detailed calculation process of fuzzy Nash equilibrium.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the National Natural Science Foundation of China(No.62173237)+4 种基金the Academic Research Projects of Beijing Union University,China(Nos.SK160202103,ZK50201911,ZK30202107,ZK30202108)the Song Shan Laboratory Foundation,China(No.YYJC062022017)the Applied Basic Research Programs of Liaoning Province,China(Nos.2022020502-JH2/1013,2022JH2/101300150)the Special Funds program of Civil Aircraft,China(No.01020220627066)the Special Funds program of Shenyang Science and Technology,China(No.22-322-3-34).
文摘Unmanned Aerial Vehicles(UAVs)play increasing important role in modern battlefield.In this paper,considering the incomplete observation information of individual UAV in complex combat environment,we put forward an UAV swarm non-cooperative game model based on Multi-Agent Deep Reinforcement Learning(MADRL),where the state space and action space are constructed to adapt the real features of UAV swarm air-to-air combat.The multi-agent particle environment is employed to generate an UAV combat scene with continuous observation space.Some recently popular MADRL methods are compared extensively in the UAV swarm noncooperative game model,the results indicate that the performance of Multi-Agent Soft Actor-Critic(MASAC)is better than that of other MADRL methods by a large margin.UAV swarm employing MASAC can learn more effective policies,and obtain much higher hit rate and win rate.Simulations under different swarm sizes and UAV physical parameters are also performed,which implies that MASAC owns a well generalization effect.Furthermore,the practicability and convergence of MASAC are addressed by investigating the loss value of Q-value networks with respect to individual UAV,the results demonstrate that MASAC is of good practicability and the Nash equilibrium of the UAV swarm non-cooperative game under incomplete information can be reached.
基金supported by the National Natural Science Foundation of China(51877174)the Natural Science Basic Research Key Project of Shaanxi(2024JC-ZDXM-31)the Technology Innovation Leading Program of Shaanxi(2024-QCY-KXJ-032).
文摘In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.
基金supported by the Key Project of Next Broadband Wireless Mobile Communication Network (2010ZX03003-001)the Key Science and Technology Achievement Transformation Project of Beijing Municipal Science & Technology Commission(Z101101054010004)
文摘expenditures and operational expenditures (OPEX) (CAPEX) for operator, the coverage and capacity optimization (CCO) is one of the key use cases in long term evolution (LTE) self-organization network (SON). In LTE system, some factors (e.g. load, traffic type, user distribution, uplink power setting, inter-cell interference, etc.) limit the coverage and capacity performance. From the view of single cell, it always pursuits maximize performance of coverage and capacity by optimizing the uplink power setting and intra-cell resource allocation, but it may result in decreasing the performance of its neighbor cells. Therefore, the benefit of every cell conflicts each other. In order to tradeoff the benefit of every cell and maximize the performance of the whole network, this paper proposes a multi-cell uplink power allocation scheme based on non-cooperative games. The scheme aims to make the performance of coverage and capacity balanced by the negotiation of the uplink power parameters among multi-cells. So the performance of every cell can reach the Nash equilibrium, making it feasible to reduce the inter-cell interference by setting an appropriate uplink power parameter. Finally, the simulation result shows the proposed algorithm can effectively enhance the performance of coverage and capacity in LTE network.
基金supported by the National Natural Science Foundation of China(No.51978481)support provided by China Scholarship Council(No.202006260140)。
文摘The heating,ventilation,and air-conditioning(HVAC)systems account for about half of the building energy consumption.The optimization methodology access to optimal control strategies of chiller plant has always been of great concern as it significantly contributes to the energy use of the whole HVAC system.Given that conventional centralized optimization methods relying on a central operator may suffer from dimensionality and a tremendous calculation burden,and show poorer flexibility when solving complex optimization issues,in this paper,a novel distributed optimization approach is presented for chiller plant control.In the proposed distributed control scheme,both trade-offs of coupled subsystems and optimal allocation among devices of the same subsystem are considered by developing a double-layer optimization structure.Non-cooperative game is used to mathematically formulate the interaction between controlled components as well as to divide the initial system-scale nonlinear optimization problem into local-scale ones.To solve these tasks,strategy updating mechanisms(PSO and IPM)are utilized.In this way,the approximate global optimal controlled variables of devices in the chiller plant can be obtained in a distributed and local-knowledge-enabled way without neither global information nor the central workstation.Furthermore,the existence and effectiveness of the proposed distributed scheme were verified by simulation case studies.Simulation results indicate that,by using the proposed distributed optimization scheme,a significant energy saving on a typical summer day can be obtained(1809.47 kW·h).The deviation from the central optimal solution is 3.83%.
基金supported by the Sino-Swedish IMT-Advanced Cooperation Project (2008DFA11780)the Canada-China Scientific and Technological Cooperation (2010DFA11320)+2 种基金the National Natural Science Foundation of China (60802033, 60873190)the Hi-Tech Research and Development Program of China (2008AA01Z211)the Fundamental Research Funds for the Central Universities (2009RC0308)
文摘In this paper,a distributed interference suppression scheme is proposed for multi-cell uplink orthogonal frequency division multiple access(OFDMA) system.Firstly,we model resource allocation process as a non-cooperative game.Then we show the concept of Nash equilibrium(NE) and investigate its existence and uniqueness in detail.To enhance the performance of multi-cell OFDMA system,the further improvement process based on NE is given.Several adjustable parameters are set to make the system achieve different tradeoffs between the total capacity and complexity.Simulation results show that the proposed scheme can greatly improve the system performance comparing with conventional scheme.
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
基金supported by National Key R&D Program of China, No.2018YFB1003905the Fundamental Research Funds for the Central Universities, No.FRF-TP-18-008A3
文摘In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as the dynamic of each users’ energy state in smart gird can be described based on a differential equation. Concept of electricity sharing is introduced to achieve load shift of main users from the high price hours to the low price hours. Nash equilibrium is given based on the Hamilton equation and the effectiveness of the proposed model is verified based on the numerical simulation results.
基金supported by the China Postdoctoral Science Foundation(No.2015M570936)National Science Foundation Project of P.R.China(No.61501026,61272506)Fundamental Research Funds for the Central Universities(No.FRF-TP-15032A1)
文摘In this paper, we propose a non-cooperative differential game theory based resource allocation approach for the network security risk assessment. For the risk assessment, the resource will be used for risk assess, including response cost and response negative cost. The whole assessment process is considered as a differential game for optimal resource control. The proposed scheme can be obtained through the Nash Equilibrium. It is proved that the game theory based algorithm is applicable and the optimal resource level can be achieved based on the proposed algorithm.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金supported by the National Science Foundation Project of P. R. China (No. 61501026,61572072)Fundamental Research Funds for the Central Universities (No. FRF-TP-15-032A1)
文摘Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnerable and very weak to security threats. In this article, the interaction between vulnerable nodes and malicious nodes in the fog computing is investigated as a non-cooperative differential game. The complex decision making process is reviewed and analyzed. To solve the game, a fictitious play-based algorithm is which the vulnerable node and the malicious nodes reach a feedback Nash equilibrium. We attain optimal strategy of energy consumption with Qo S guarantee for the system, which are conveniently operated and suitable for fog nodes. The system simulation identifies the propagation of malicious nodes. We also determine the effects of various parameters on the optimal strategy. The simulation results support a theoretical foundation to limit malicious nodes in fog computing, which can help fog service providers make the optimal dynamic strategies when different types of nodes dynamically change their strategies.