BACKGROUND: The KEAP1-Nrf2 antioxidant signaling pathway is important in protecting liver from various insults. However,little is known about the expression of Nrf2-related genes in human liver in different diseases....BACKGROUND: The KEAP1-Nrf2 antioxidant signaling pathway is important in protecting liver from various insults. However,little is known about the expression of Nrf2-related genes in human liver in different diseases.METHODS: This study utilized normal donor liver tissues(n=35), samples from patients with hepatocellular carcinoma(HCC, n=24), HBV-related cirrhosis(n=27), alcoholic cirrhosis(n=5) and end-stage liver disease(n=13). All of the liver tissues were from the Oriental Liver Transplant Center, Beijing,China. The expressions of Nrf2 and Nrf2-related genes, including its negative regulator Kelch-like ECH-associated protein 1(KEAP1), its targeted gene NAD(P)H-quinone oxidoreductase 1(NQO1), glutamate-cysteine ligase catalytic subunit(GCLC) and modified subunit(GCLM), heme oxygenase 1(HO-1) and peroxiredoxin-1(PRDX1) were evaluated. RESULTS: The expression of Nrf2 was decreased in HCC, increased in alcoholic cirrhosis and end-stage liver disease. The expression of KEAP1 was increased in all of the liver samples.The most notable finding was the increased expression of NQO1 in HCC(18-fold), alcoholic cirrhosis(6-fold), endstage liver disease(5-fold) and HBV-related cirrhosis(3-fold).Peri-HCC also had 4-fold higher NQO1 m RNA as compared to the normal livers. GCLC m RNA levels were lower only in HCC, as compared to the normal livers and peri-HCC tissues.GCLM m RNA levels were higher in HBV-related cirrhosis and end-stage liver disease. HO-1 m RNA levels were increased in all liver tissues except for HCC. Peri-HCC had higher PRDX1 m RNA levels compared with HCC and normal livers.CONCLUSION: Nrf2 and Nrf2-related genes are aberrantly expressed in the liver in different diseases and the increase of NQO1 was the most notable finding, especially in HCC.展开更多
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o...Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.展开更多
Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairmen...Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence a...BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence and development of DFU,focusing on the therapeutic mechanisms of X-Paste(XP)of wound healing in diabetic mice.METHODS Employing traditional Chinese medicine ointment preparation methods,XP combines various medicinal ingredients.High-performance liquid chromatography(HPLC)identified XP’s main components.Using streptozotocin(STZ)-induced diabetic,we aimed to investigate whether XP participated in the process of diabetic wound healing.RNA-sequencing analyzed gene expression differences between XP-treated and control groups.Molecular docking clarified XP’s treatment mechanisms for diabetic wound healing.Human umbilical vein endothelial cells(HUVECs)were used to investigate the effects of Andrographolide(Andro)on cell viability,reactive oxygen species generation,apoptosis,proliferation,and metastasis in vitro following exposure to high glucose(HG),while NF-E2-related factor-2(Nrf2)knockdown elucidated Andro’s molecular mechanisms.RESULTS XP notably enhanced wound healing in mice,expediting the healing process.RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment.HPLC identified 21 primary XP components,with Andro exhibiting strong Nrf2 binding.Andro mitigated HG-induced HUVECs proliferation,metastasis,angiogenic injury,and inflammation inhibition.Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation,with Nrf2 knockdown reducing Andro’s proliferative and endothelial protective effects.CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models.As XP’s key component,Andro activates the Nrf2/HO-1 signaling pathway,enhancing cell proliferation,tubule formation,and inflammation reduction.展开更多
基金supported by grants from the Chinese 863 Project(2012AA022409)Guizhou Science and Technology Foundation(2009-70019)
文摘BACKGROUND: The KEAP1-Nrf2 antioxidant signaling pathway is important in protecting liver from various insults. However,little is known about the expression of Nrf2-related genes in human liver in different diseases.METHODS: This study utilized normal donor liver tissues(n=35), samples from patients with hepatocellular carcinoma(HCC, n=24), HBV-related cirrhosis(n=27), alcoholic cirrhosis(n=5) and end-stage liver disease(n=13). All of the liver tissues were from the Oriental Liver Transplant Center, Beijing,China. The expressions of Nrf2 and Nrf2-related genes, including its negative regulator Kelch-like ECH-associated protein 1(KEAP1), its targeted gene NAD(P)H-quinone oxidoreductase 1(NQO1), glutamate-cysteine ligase catalytic subunit(GCLC) and modified subunit(GCLM), heme oxygenase 1(HO-1) and peroxiredoxin-1(PRDX1) were evaluated. RESULTS: The expression of Nrf2 was decreased in HCC, increased in alcoholic cirrhosis and end-stage liver disease. The expression of KEAP1 was increased in all of the liver samples.The most notable finding was the increased expression of NQO1 in HCC(18-fold), alcoholic cirrhosis(6-fold), endstage liver disease(5-fold) and HBV-related cirrhosis(3-fold).Peri-HCC also had 4-fold higher NQO1 m RNA as compared to the normal livers. GCLC m RNA levels were lower only in HCC, as compared to the normal livers and peri-HCC tissues.GCLM m RNA levels were higher in HBV-related cirrhosis and end-stage liver disease. HO-1 m RNA levels were increased in all liver tissues except for HCC. Peri-HCC had higher PRDX1 m RNA levels compared with HCC and normal livers.CONCLUSION: Nrf2 and Nrf2-related genes are aberrantly expressed in the liver in different diseases and the increase of NQO1 was the most notable finding, especially in HCC.
基金Supported by Capital Medical University Scientific Research Grant for Undergraduate Students(No.XSKY2023026).
文摘Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
基金funded by the Research Deanship of King Khalid University,No.GRP-215-43 (to FHA)Princess Nourah bint Abdulrohman University Researchers Supporting Project,No.PNURSP2023R110 (to AFD)。
文摘Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
基金Supported by the Shanghai Science and Technology Innovation Project,One Belt One Road International Joint Laboratory of Medical Mycology,No.21410750500。
文摘BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence and development of DFU,focusing on the therapeutic mechanisms of X-Paste(XP)of wound healing in diabetic mice.METHODS Employing traditional Chinese medicine ointment preparation methods,XP combines various medicinal ingredients.High-performance liquid chromatography(HPLC)identified XP’s main components.Using streptozotocin(STZ)-induced diabetic,we aimed to investigate whether XP participated in the process of diabetic wound healing.RNA-sequencing analyzed gene expression differences between XP-treated and control groups.Molecular docking clarified XP’s treatment mechanisms for diabetic wound healing.Human umbilical vein endothelial cells(HUVECs)were used to investigate the effects of Andrographolide(Andro)on cell viability,reactive oxygen species generation,apoptosis,proliferation,and metastasis in vitro following exposure to high glucose(HG),while NF-E2-related factor-2(Nrf2)knockdown elucidated Andro’s molecular mechanisms.RESULTS XP notably enhanced wound healing in mice,expediting the healing process.RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment.HPLC identified 21 primary XP components,with Andro exhibiting strong Nrf2 binding.Andro mitigated HG-induced HUVECs proliferation,metastasis,angiogenic injury,and inflammation inhibition.Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation,with Nrf2 knockdown reducing Andro’s proliferative and endothelial protective effects.CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models.As XP’s key component,Andro activates the Nrf2/HO-1 signaling pathway,enhancing cell proliferation,tubule formation,and inflammation reduction.