The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates ...The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined.This study provides the first comprehensive,unbiased,cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens.Within the hypothalamus,pituitary,and ovary,seven,12,and 13 distinct cell types were identified,respectively.Results indicated that the pituitary adenylate cyclase activating polypeptide(PACAP),follicle-stimulating hormone(FSH),and prolactin(PRL)signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone(GnRH),FSH,and luteinizing hormone(LH)within the hypothalamus and pituitary.In the ovary,interactions between granulosa cells and oocytes involved the KIT,CD99,LIFR,FN1,and ANGPTL signaling pathways,which collectively regulate follicular maturation.The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis.Additionally,gene expression analysis revealed that relaxin 3(RLN3),gastrin-releasing peptide(GRP),and cocaine-and amphetamine regulated transcripts(CART,also known as CARTPT)may function as novel endocrine hormones,influencing the HPO axis through autocrine,paracrine,and endocrine pathways.Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP,RLN3,CARTPT,LHCGR,FSHR,and GRPR in the ovaries of Lohmann layers,potentially contributing to their superior reproductive performance.In conclusion,this study provides a detailed molecular characterization of the HPO axis,offering novel insights into the regulatory mechanisms underlying reproductive biology.展开更多
Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impair...Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.展开更多
Objective To study the central role of ginkgolide B (BN52021) in regulating cardiovascular function of nerve center by examining the effects of ginkgolide B on the electrical activity of rat paraventricular nucleus ...Objective To study the central role of ginkgolide B (BN52021) in regulating cardiovascular function of nerve center by examining the effects of ginkgolide B on the electrical activity of rat paraventricular nucleus (PVN) neurons in hypothalamic slice preparation and to elucidate the mechanism involved. Methods Extracellular single-unit discharge recording technique. Results (1) In response to the application of ginkgolide t3 (0.1, 1, 10 μmol/L; n = 27) into the perfusate for 2 rain, the spontaneous discharge rates (SDR) of 26 (26/27, 96.30%) neurons were significantly decreased in a dose-dependent manner. (2) Pretreatment with L-glutamate (L-Glu, 0.2 mmol/L) led to a marked increase in the SDR of all 8 (100%) neurons in an epileptiform pattern. The increased discharges were suppressed significantly after ginkgolide B (1 μmol/L) was applied into the perfusate for 2 min. (3) In 8 neurons, perfusion of the selective L-type calcium channel agonist, Bay K 8644 (0.1 μmol/L), induced a significant increase in the discharge rates of 8 (8/8, 100%) neurons, while ginkgolide B (1μmol/L) applied into the perfusate, could inhibit the discharges of 8 (100%) neurons. (4) In 8 neurons, the broad potassium channels blocker, tetraethylammonium (TEA, 1 mmol/L) completely blocked the inhibitory effect of ginkgolide B (1 μmol/L). Conclusion These results suggest that ginkgolide B can inhibit the electrical activity of paraventricular neurons. The inhibitory effect may be related to the blockade of L-type voltage-activated calcium channel and potentially concerned with delayed rectifier potassium channel (KDR).展开更多
[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in ...[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in nucleus and organelle genomes were analyzed by statistical method,and comparative analysis of related functional genes were carried out.[Result]The pure selective pressures of the related functional genes were similar between nucleus and chloroplast genomes,but was lower in mitochondrial genome.The significant differences of nucleotide substitution rate between sorghum and maize orthologous genes in nucleus genome,and among different functional genes in nucleus genome were mainly due to the nonsynonymous substitution difference.[Conclusion]The molecular evolutional rate of different functional genes and different lineages were influenced by selective pressure.The differences of molecular evolutional rate among nucleus,chloroplast and mitochondria genomes had no direct relationship with selective pressure.展开更多
Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine met...Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine methyl ester (L-NAME) and normal saline (NS) was separately microinjected into rat caudate nucleus. Expressions of neuronal NO synthase (nNOS) mRNA and apelin receptor mRNA were detected by RT-PCR at 4, 8, 12, 24 and 48 h after microinjection, and their correlation was determined. Results The expressions of nNOS mRNA and apelin receptor mRNA were both significantly increased after microinjection of L-Arg, but significantly decreased after microinjection of L-NAME compared with the NS control group. The nNOS mRNA had a positive correlation with the expression of apelin receptor mRNA after microinjection of L-Arg and L-NAME. Conclusion The activity of NOS in the central nervous system, especially in the caudate nucleus, is one of the key factors for NO to exert many kinds of biological actions, such as modulation of central pain, as a neurotransmitter. The neurobiological action of NO in rat caudate nucleus may be associated with apelin receptors.展开更多
Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morpho...Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.展开更多
AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydr...AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus(p VN), and the effect of the nucleus tractus solitarius(NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the p VN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin(IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the p VN in rats were detected by Western blot. Malondialdehyde(MDA) content and superoxide dismutase(SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulationof the p VN on rats with UC were eliminated after chemical damage to the p VN. After glutamate receptor antagonist kynurenic acid was injected into the p VN, the protective effects of the chemical stimulation of the p VN were eliminated in rats with UC. After AVpVl receptor antagonist([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of p VN on UC was also eliminated. After chemical stimulation of the p VN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic p VN provides a protective effect against UC injury in rats. Hypothalamic p VN, NTS and vagus nerve play key roles in this process.展开更多
Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers p...Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.展开更多
Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad ...Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin re- ceptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histo- chemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings sug- gest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金supported by the Natural Science Foundation of Sichuan Province(2022NSFSC1767)National Natural Science Foundation of China(32360828)。
文摘The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined.This study provides the first comprehensive,unbiased,cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens.Within the hypothalamus,pituitary,and ovary,seven,12,and 13 distinct cell types were identified,respectively.Results indicated that the pituitary adenylate cyclase activating polypeptide(PACAP),follicle-stimulating hormone(FSH),and prolactin(PRL)signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone(GnRH),FSH,and luteinizing hormone(LH)within the hypothalamus and pituitary.In the ovary,interactions between granulosa cells and oocytes involved the KIT,CD99,LIFR,FN1,and ANGPTL signaling pathways,which collectively regulate follicular maturation.The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis.Additionally,gene expression analysis revealed that relaxin 3(RLN3),gastrin-releasing peptide(GRP),and cocaine-and amphetamine regulated transcripts(CART,also known as CARTPT)may function as novel endocrine hormones,influencing the HPO axis through autocrine,paracrine,and endocrine pathways.Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP,RLN3,CARTPT,LHCGR,FSHR,and GRPR in the ovaries of Lohmann layers,potentially contributing to their superior reproductive performance.In conclusion,this study provides a detailed molecular characterization of the HPO axis,offering novel insights into the regulatory mechanisms underlying reproductive biology.
基金supported by grants from the Shenzhen Science and Technology Program(No.2021-22154)National Natural Science Foundation of China(No.82205271,No.82374564,and No.82074566)+1 种基金Wuhan Medical Research Project(No.WZ21Q09)Key Chinese Medicine Project of Hubei Provincial Natural Science Foundation(No.2023AFD112).
文摘Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.
文摘Objective To study the central role of ginkgolide B (BN52021) in regulating cardiovascular function of nerve center by examining the effects of ginkgolide B on the electrical activity of rat paraventricular nucleus (PVN) neurons in hypothalamic slice preparation and to elucidate the mechanism involved. Methods Extracellular single-unit discharge recording technique. Results (1) In response to the application of ginkgolide t3 (0.1, 1, 10 μmol/L; n = 27) into the perfusate for 2 rain, the spontaneous discharge rates (SDR) of 26 (26/27, 96.30%) neurons were significantly decreased in a dose-dependent manner. (2) Pretreatment with L-glutamate (L-Glu, 0.2 mmol/L) led to a marked increase in the SDR of all 8 (100%) neurons in an epileptiform pattern. The increased discharges were suppressed significantly after ginkgolide B (1 μmol/L) was applied into the perfusate for 2 min. (3) In 8 neurons, perfusion of the selective L-type calcium channel agonist, Bay K 8644 (0.1 μmol/L), induced a significant increase in the discharge rates of 8 (8/8, 100%) neurons, while ginkgolide B (1μmol/L) applied into the perfusate, could inhibit the discharges of 8 (100%) neurons. (4) In 8 neurons, the broad potassium channels blocker, tetraethylammonium (TEA, 1 mmol/L) completely blocked the inhibitory effect of ginkgolide B (1 μmol/L). Conclusion These results suggest that ginkgolide B can inhibit the electrical activity of paraventricular neurons. The inhibitory effect may be related to the blockade of L-type voltage-activated calcium channel and potentially concerned with delayed rectifier potassium channel (KDR).
基金Supported by Natural Science Foundation of Jiangsu Province(BK2009235)~~
文摘[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in nucleus and organelle genomes were analyzed by statistical method,and comparative analysis of related functional genes were carried out.[Result]The pure selective pressures of the related functional genes were similar between nucleus and chloroplast genomes,but was lower in mitochondrial genome.The significant differences of nucleotide substitution rate between sorghum and maize orthologous genes in nucleus genome,and among different functional genes in nucleus genome were mainly due to the nonsynonymous substitution difference.[Conclusion]The molecular evolutional rate of different functional genes and different lineages were influenced by selective pressure.The differences of molecular evolutional rate among nucleus,chloroplast and mitochondria genomes had no direct relationship with selective pressure.
文摘Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine methyl ester (L-NAME) and normal saline (NS) was separately microinjected into rat caudate nucleus. Expressions of neuronal NO synthase (nNOS) mRNA and apelin receptor mRNA were detected by RT-PCR at 4, 8, 12, 24 and 48 h after microinjection, and their correlation was determined. Results The expressions of nNOS mRNA and apelin receptor mRNA were both significantly increased after microinjection of L-Arg, but significantly decreased after microinjection of L-NAME compared with the NS control group. The nNOS mRNA had a positive correlation with the expression of apelin receptor mRNA after microinjection of L-Arg and L-NAME. Conclusion The activity of NOS in the central nervous system, especially in the caudate nucleus, is one of the key factors for NO to exert many kinds of biological actions, such as modulation of central pain, as a neurotransmitter. The neurobiological action of NO in rat caudate nucleus may be associated with apelin receptors.
文摘Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.
文摘AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus(p VN), and the effect of the nucleus tractus solitarius(NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the p VN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin(IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the p VN in rats were detected by Western blot. Malondialdehyde(MDA) content and superoxide dismutase(SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulationof the p VN on rats with UC were eliminated after chemical damage to the p VN. After glutamate receptor antagonist kynurenic acid was injected into the p VN, the protective effects of the chemical stimulation of the p VN were eliminated in rats with UC. After AVpVl receptor antagonist([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of p VN on UC was also eliminated. After chemical stimulation of the p VN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic p VN provides a protective effect against UC injury in rats. Hypothalamic p VN, NTS and vagus nerve play key roles in this process.
基金supported by grants from National Natural Science Foundation of China(No.81071307,No.30872440,No.81171259)
文摘Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
基金supported by the National Natural Science Foundation of China,No.81271166,81371107the Natural Science Foundation of Guangdong Province in China,No.10451008901006145
文摘Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin re- ceptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histo- chemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings sug- gest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.