期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A review of discrete modeling techniques for fracturing processes in discontinuous rock masses 被引量:63
1
作者 A.Lisjak G.Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期301-314,共14页
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur... The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations. 展开更多
关键词 Rock fracturing numerical modeling discrete element method (DEM)Finite-discrete element method (FDEM)
下载PDF
Steady-State Modeling of Heat Transfer on the Recovery System of Condensing Boiler
2
作者 Joachim Ntonda Frederic Lontsi Francois Njock Bayock 《Journal of Power and Energy Engineering》 2021年第7期29-40,共12页
<span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective i... <span style="font-family:Verdana;">The increase of energy production is very important nowadays. It is necessary to improve the performance and efficiency of heat production facilities. The objective is to reduce pollutant emissions and regulate investment costs. One </span><span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">solution</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is to control fuel and electricity consumption. </span><span style="font-family:Verdana;">This article develops a new model of simulation heat diffusion on the recovery system of condensing boiler. The method is based on the first and second thermodynamic systems. The Numerical discrete Model (NDM) was applied using MATLAB to simulate different characteristics of heat transfer in the recovery system. The result shows that the recovery unit can absorb the following temperatures;the range from 88°C to 90.7°C when the length of the tube is between respectively 110 and 111 m. the energy efficiency was between 0.55 and 0.57 which allowed confirming the model. This new model has some advantages such as;the use of an instantaneous calculation time. The heat recovered by the water tank can also serve as preheating different systems. One part of the heat recovered will be accumulated to be used as domestic hot water.</span> 展开更多
关键词 Heat Recovery STEADY-STATE numerical discrete model
下载PDF
3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing 被引量:31
3
作者 E.Ghazvinian M.S.Diederichs R.Quey 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期506-521,共16页
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol... A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 numerical modelling 3D Voronoi tessellation discrete element method Grain-based model Crack damage thresholds Fabric-guided micro-fracturing Anisotropy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部