Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels...Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.展开更多
Current situation of urban green spaces was analyzed, vertical greening, elevated floor and roof garden were effi cient ways of expanding urban green coverage area. The signifi cance of expanding green areas, improvin...Current situation of urban green spaces was analyzed, vertical greening, elevated floor and roof garden were effi cient ways of expanding urban green coverage area. The signifi cance of expanding green areas, improving soil, renovating and maintaining green plants was discussed.展开更多
基金a result of project WAY4SafeRail—Wayside monitoring system FOR SAFE RAIL transportation, with reference NORTE-01-0247-FEDER-069595co-funded by the European Regional Development Fund (ERDF), through the North Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement+3 种基金financially supported by Base Funding-UIDB/04708/2020Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT—Instituto de Estruturas e Constru??esfunded by national funds through the FCT/ MCTES (PIDDAC)Grant No. 2021.04272. CEECIND from the Stimulus of Scientific Employment, Individual Support (CEECIND) - 4th Edition provided by “FCT – Funda??o para a Ciência, DOI : https:// doi. org/ 10. 54499/ 2021. 04272. CEECI ND/ CP1679/ CT0003”。
文摘Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.
基金Supported by the National Science&Technology Pillar Program of China(2012BAC05B02)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(QA201208)the Funds for Creative Research Groups of China(51121062)
文摘Current situation of urban green spaces was analyzed, vertical greening, elevated floor and roof garden were effi cient ways of expanding urban green coverage area. The signifi cance of expanding green areas, improving soil, renovating and maintaining green plants was discussed.