Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new al...Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.展开更多
The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ...The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.展开更多
In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D...In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented.展开更多
Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays...Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.展开更多
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by t...We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.展开更多
The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enab...The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields.展开更多
International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Ma...International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Manufacturing Society of IACSIT (International Association of Computer Science and Information Technology),展开更多
Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been ...Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.展开更多
Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chlo...Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chloride and its charge transfer (CT) complexes with chloranil, DDQ, TCNQ and TCNE as organic acceptors are studied in details. The CT complexes are having neither two absorption edges like ternary complex having one donor and two acceptors nor binary type with Lorentzian or Gaussian envelopes. The forbidden gap is direct band gap except chloranil complex due to increase in molecular distance and CT interaction. There is imperfect nesting and partial screening determining the mid-IR envelope, which is qualitatively different from the envelopes in binary systems. There is inverted parabola in some range below this envelope. It is explained how infrared absorption is related with the applications of such organic photoconductors in optoelectronic devices.展开更多
Dirac-vortex microcavity laser based on InAs/InGaAs quantum dots have been experimentally realized on silicon substrate.The topological laser features a large spectral range and high robustness against variations such...Dirac-vortex microcavity laser based on InAs/InGaAs quantum dots have been experimentally realized on silicon substrate.The topological laser features a large spectral range and high robustness against variations such as cavity size.展开更多
Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling d...Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling detection of subbandgap infrared photons.By harvesting hot carriers prior to thermalization,energy dissipation is minimized,leading to highly efficient photoelectric conversion.Distinguished from conventional band-edge carriers,the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion.However,a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking,and the utilization of this strategy for tailoring infrared response is in its early stages.This review aims to provide a comprehensive overview of the generation,transfer and transport dynamics of hot carriers.Basic principles of hot-carrier conversion in heterostructures are discussed in detail.In addition,progresses of two-dimensional(2D)infrared hot-carrier optoelectronic devices are summarized,with a specific emphasis on photodetectors,solar cells,light-emitting devices and novel functionalities through hot-carrier engineering.Furthermore,challenges and prospects of hot-carrier device towards infrared applications are highlighted.展开更多
Two‐dimensional(2D)materials show outstanding properties such as dangling bond‐free surfaces,strong in‐plane while weak out‐of‐plane bonding,layer‐dependent electronic structures,and tunable electronic and optoe...Two‐dimensional(2D)materials show outstanding properties such as dangling bond‐free surfaces,strong in‐plane while weak out‐of‐plane bonding,layer‐dependent electronic structures,and tunable electronic and optoelectronic properties,making them promising for numerous applications.Integrating 2D inorganics with organic materials to make van der Waals heterostructures at the 2D thickness limit has created new platforms for fabricating on‐demand multifunctional devices.To further broaden the limited choices of 2D inorganic‐based heterostructures,a wide range of available 2D organic materials with tunable properties have opened new opportunities for designing large numbers of heterostructures with 2D inorganic materials.This review aims to attract the attention of researchers toward this emerging 2D organic−inorganic field.We first highlight recent progress in organic−inorganic heterostructures and their synthesis and then discuss their potential applications,such as field‐effect transistors,photodetectors,solar cells,and neuromorphic computing devices.In the end,we present a summary of challenges and opportunities in this field.展开更多
In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applic...In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applications.Spiro[fluorene-9,9′-xanthene](SFX)has been becoming the robust building-block that fulfilling the practical requirements due to its key features of non-planarity,one-pot facile availability,well-defined quality assurance as well as performance behaviors.In this review,we introduce the SFX and its analogues,including synthesis,molecular design,device performance,and structure-property relationship,in the applications of organic light-emitting diodes(OLEDs),organic photovoltaics,perovskite solar cells(PSCs)and others.Furthermore,emitters or hosts for OLED and hole transport materials for PSCs are highlighted at the level of molecular configuration and film morphology.Tracing the thread from intrinsic photoelectric properties,molecular packing to optoelectronic application,the advantage of stability and low-cost of SFX-based materials are illuminated,and an outlook is given providing orientation for bring SFX into the fields of catalysis and energy chemistry in view of its binary conjugation and three-dimensional configuration.展开更多
The ultrathin body of two-dimensional(2D)materials provides potential for next-generation electronics and optoelectronics.The unavoidable atomic defects substantially determine the physical properties of atomic-level ...The ultrathin body of two-dimensional(2D)materials provides potential for next-generation electronics and optoelectronics.The unavoidable atomic defects substantially determine the physical properties of atomic-level thin 2D materials,thus enabling new functionalities that are impossible in three-dimensional semiconductors.Therefore,rational design of atomic defects provides an alternative approach to modulate the physical properties of 2D materials.In this review,we summarize the recent progress of defect engineering in 2D materials,particularly in device performance enhancement.Firstly,the common defects in 2D materials and approaches for generating and repairing defects,including synthesis and post-growth treatments,are systematically introduced.The correlations between defects and optical,electronic,and magnetic properties of 2D materials are then highlighted.Subsequently,defect engineering for high performance electronics and optoelectronics is emphasized.At last,we provide our perspective on challenges and opportunities in defect engineering of 2D materials.展开更多
Metal halide perovskites(MHPs),emerging as innovative and promising semiconductor materials with prominent optoelectronic properties,has been pioneering a new era of light management(ranging from emission,absorption,m...Metal halide perovskites(MHPs),emerging as innovative and promising semiconductor materials with prominent optoelectronic properties,has been pioneering a new era of light management(ranging from emission,absorption,modulation,to transmission)for next-generation optoelectronic technology.Notably,the exploration of fundamental characteristics of MHPs and their devices is the main research theme during the past decade,while in the next decade,it will be primarily critical to promote their implantation in the next-generation optoelectronics.In this review,we first retrospect the historical research milestones of MHPs and their optoelectronic devices.Thereafter,we introduce the origin of the unique optoelectronic features of MHPs,based on which we highlight the tunability of these features via regulating the phase,dimensionality,composition,and geometry of MHPs.Then,we show that owing to the convenient property control of MHPs,various optoelectronic devices with target performance can be designed.At last,we emphasize on the revolutionary applications of MHPs-based devices on the existing optoelectronic systems.This review demonstrates the key role of MHPs played in the development of modern optoelectronics,which is expected to inspire the novel research directions of MHPs and promote the widespread applications of MHPs in the next-generation optoelectronics.展开更多
Single-element two-dimensional(2D)tellurium(Te)which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family.2D Te possesses high carrier mobility,wide tunable bandgap,...Single-element two-dimensional(2D)tellurium(Te)which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family.2D Te possesses high carrier mobility,wide tunable bandgap,strong light-matter interaction,better environmental stability,and strong anisotropy,making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices.However,as an emerging 2D material,the research on fundamental property and device application of Te is still in its infancy.Hence,this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction.Firstly,the structural features,basic physical properties,and various preparation methods of 2D Te are systemically introduced.Then,we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors,photodetectors and van der Waals heterostructure photodiodes.Finally,the future challenges,opportunities,and development directions of 2D Te-based electronic and optoelectronic devices are prospected.展开更多
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and ma- nipulating the optical a...The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and ma- nipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoeleetronics. We summarize approaches for control that modify their structural and chemical en- vironment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.展开更多
基金the National Natural Science Foundation of China(21905316,22175201)Guangdong Natural Science Foundation(2019A1515011748)+1 种基金the Science and Technology Planning Project of Guangdong Province(2019A050510018)Sun Yat-sen University.
文摘Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.
基金supported by the National Natural Science Foundation of China(51572025,51627801,61435010 and 51702219)the State Key Research Development Program of China(2019YFB2203503)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515110209)the Science and Technology Innovation Commission of Shenzhen(JCYJ20170818093453105,JCYJ20180305125345378)National Foundation of China(41422050303)Beijing Municipal Science&Technology Commission and the Fundamental Research Funds for Central Universities.
文摘The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700702)research start-up funding from Guangxi University of Science and Technology (No. 03190219)
文摘In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented.
基金supported by the Natural Science Foundation of Beijing Municipality(No.Z180011)the National Natural Science Foundation of China(Nos.51991340,51991342,51972022,92163205,and 52188101)+2 种基金the National Key Research and Development Program of China(No.2016YFA0202701)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-025A3)the Overseas Expertise Introduction Projects for Discipline Innovation(No.B14003)。
文摘Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.
基金The authors thank National Natural Science Foundation of China (Grant No. 61534004, 61604112 and 61622405).
文摘We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.
基金supported by the Basic Science Research Program(2018R1A2A1A05019733)Wearable Platform Materials Technology Center(2016R1A5A1009926)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)Industry Technology Development Program(10080540)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)
文摘The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields.
文摘International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Manufacturing Society of IACSIT (International Association of Computer Science and Information Technology),
基金supported by the National Natural Science Foundation of China (Grant No. 62004080)the Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143)the China Postdoctoral Science Foundation (Grant No. 2020M670834)。
文摘Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.
文摘Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chloride and its charge transfer (CT) complexes with chloranil, DDQ, TCNQ and TCNE as organic acceptors are studied in details. The CT complexes are having neither two absorption edges like ternary complex having one donor and two acceptors nor binary type with Lorentzian or Gaussian envelopes. The forbidden gap is direct band gap except chloranil complex due to increase in molecular distance and CT interaction. There is imperfect nesting and partial screening determining the mid-IR envelope, which is qualitatively different from the envelopes in binary systems. There is inverted parabola in some range below this envelope. It is explained how infrared absorption is related with the applications of such organic photoconductors in optoelectronic devices.
文摘Dirac-vortex microcavity laser based on InAs/InGaAs quantum dots have been experimentally realized on silicon substrate.The topological laser features a large spectral range and high robustness against variations such as cavity size.
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFA1202904,2023YFB3611400Project of State Key Laboratory of Organic Electronics and Information Displays,Nanjing University of Posts and Telecommunications,Grant/Award Number:GZR2024010024+3 种基金Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications,Grant/Award Number:NY223181National Natural Science Foundation of China,Grant/Award Numbers:62375139,62288102,62235008,62174026,62225404Natural Science Foundation of Jiangsu Province Major Project,Grant/Award Number:BK20212012Project of State Key Laboratory of Organic Electronics and Information Displays,Grant/Award Number:GDX2022010007。
文摘Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices.The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors,enabling detection of subbandgap infrared photons.By harvesting hot carriers prior to thermalization,energy dissipation is minimized,leading to highly efficient photoelectric conversion.Distinguished from conventional band-edge carriers,the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion.However,a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking,and the utilization of this strategy for tailoring infrared response is in its early stages.This review aims to provide a comprehensive overview of the generation,transfer and transport dynamics of hot carriers.Basic principles of hot-carrier conversion in heterostructures are discussed in detail.In addition,progresses of two-dimensional(2D)infrared hot-carrier optoelectronic devices are summarized,with a specific emphasis on photodetectors,solar cells,light-emitting devices and novel functionalities through hot-carrier engineering.Furthermore,challenges and prospects of hot-carrier device towards infrared applications are highlighted.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52125309)the National Natural Science Foundation of China(Nos.51991343,52188101,and 51991340)+2 种基金the National Key R&D Program(No.2018YFA0307300)Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)the Shenzhen Basic Research Project(No.JCYJ20200109144616617).
文摘Two‐dimensional(2D)materials show outstanding properties such as dangling bond‐free surfaces,strong in‐plane while weak out‐of‐plane bonding,layer‐dependent electronic structures,and tunable electronic and optoelectronic properties,making them promising for numerous applications.Integrating 2D inorganics with organic materials to make van der Waals heterostructures at the 2D thickness limit has created new platforms for fabricating on‐demand multifunctional devices.To further broaden the limited choices of 2D inorganic‐based heterostructures,a wide range of available 2D organic materials with tunable properties have opened new opportunities for designing large numbers of heterostructures with 2D inorganic materials.This review aims to attract the attention of researchers toward this emerging 2D organic−inorganic field.We first highlight recent progress in organic−inorganic heterostructures and their synthesis and then discuss their potential applications,such as field‐effect transistors,photodetectors,solar cells,and neuromorphic computing devices.In the end,we present a summary of challenges and opportunities in this field.
基金support by the the Sci-ence Research Plan of Shenyang University of Chemical Technol-ogy(XXLJ2019006)the Natural Science Foundation of Liaoning Province(2021-MS-254).
文摘In the progress of realizing the commercialization of organic optoelectronic materials,the four basic coherent factors are stability,cost,performance,and processability,all which determine the results of device applications.Spiro[fluorene-9,9′-xanthene](SFX)has been becoming the robust building-block that fulfilling the practical requirements due to its key features of non-planarity,one-pot facile availability,well-defined quality assurance as well as performance behaviors.In this review,we introduce the SFX and its analogues,including synthesis,molecular design,device performance,and structure-property relationship,in the applications of organic light-emitting diodes(OLEDs),organic photovoltaics,perovskite solar cells(PSCs)and others.Furthermore,emitters or hosts for OLED and hole transport materials for PSCs are highlighted at the level of molecular configuration and film morphology.Tracing the thread from intrinsic photoelectric properties,molecular packing to optoelectronic application,the advantage of stability and low-cost of SFX-based materials are illuminated,and an outlook is given providing orientation for bring SFX into the fields of catalysis and energy chemistry in view of its binary conjugation and three-dimensional configuration.
基金supported by the financial supports from the National Natural Science Foundation of China(No.61904110)Young Teachers’Startup Fund for Scientific Research of Shenzhen University(No.860-000002110426).
文摘The ultrathin body of two-dimensional(2D)materials provides potential for next-generation electronics and optoelectronics.The unavoidable atomic defects substantially determine the physical properties of atomic-level thin 2D materials,thus enabling new functionalities that are impossible in three-dimensional semiconductors.Therefore,rational design of atomic defects provides an alternative approach to modulate the physical properties of 2D materials.In this review,we summarize the recent progress of defect engineering in 2D materials,particularly in device performance enhancement.Firstly,the common defects in 2D materials and approaches for generating and repairing defects,including synthesis and post-growth treatments,are systematically introduced.The correlations between defects and optical,electronic,and magnetic properties of 2D materials are then highlighted.Subsequently,defect engineering for high performance electronics and optoelectronics is emphasized.At last,we provide our perspective on challenges and opportunities in defect engineering of 2D materials.
基金financially supported by the Natural Science Foundation of China(Grants 51972172,61705102,and 51802253)the China Postdoctoral Science Foundation(Grants 2021M692630)+6 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-629,2021JLM-43)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-007 and 2020GXLH-Z-014)Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(Grant BK20200034)the Innovation Project of Optics Valley Laboratory(OVL2021BG006)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF003)the Young 1000 Talents Global Recruitment Program of Chinathe Fundamental Research Funds for the Central Universities.
文摘Metal halide perovskites(MHPs),emerging as innovative and promising semiconductor materials with prominent optoelectronic properties,has been pioneering a new era of light management(ranging from emission,absorption,modulation,to transmission)for next-generation optoelectronic technology.Notably,the exploration of fundamental characteristics of MHPs and their devices is the main research theme during the past decade,while in the next decade,it will be primarily critical to promote their implantation in the next-generation optoelectronics.In this review,we first retrospect the historical research milestones of MHPs and their optoelectronic devices.Thereafter,we introduce the origin of the unique optoelectronic features of MHPs,based on which we highlight the tunability of these features via regulating the phase,dimensionality,composition,and geometry of MHPs.Then,we show that owing to the convenient property control of MHPs,various optoelectronic devices with target performance can be designed.At last,we emphasize on the revolutionary applications of MHPs-based devices on the existing optoelectronic systems.This review demonstrates the key role of MHPs played in the development of modern optoelectronics,which is expected to inspire the novel research directions of MHPs and promote the widespread applications of MHPs in the next-generation optoelectronics.
基金supported by the National Natural Science Foundation of China(Nos.22222505 and 51972204)the Natural Science Basic Research Plan in Shaanxi Province(Nos.2021JM316 and 2021JM-203)+1 种基金the Science and Technology Program of Shaanxi Province(No.2017KJXX-16)the Shaanxi Sanqin Scholars Innovation Team,the Fundamental Innovation Project and Young Scientist Initiative Project in School of Materials Science and Engineering(SNNU).
文摘Single-element two-dimensional(2D)tellurium(Te)which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family.2D Te possesses high carrier mobility,wide tunable bandgap,strong light-matter interaction,better environmental stability,and strong anisotropy,making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices.However,as an emerging 2D material,the research on fundamental property and device application of Te is still in its infancy.Hence,this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction.Firstly,the structural features,basic physical properties,and various preparation methods of 2D Te are systemically introduced.Then,we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors,photodetectors and van der Waals heterostructure photodiodes.Finally,the future challenges,opportunities,and development directions of 2D Te-based electronic and optoelectronic devices are prospected.
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
基金The authors acknowledge support by the Office of Naval Research under Grant No. N00014-16-1-3055, the U.S. Department of Energy, Office of Basic Energy Sciences, Divi- sion of Materials Sciences and Engineering under award No. DE- SC0012130, and National Science Foundation MRSEC program under grant No. DMR-1720139 at the Materials Research Center of Northwestern University.
文摘The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and ma- nipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoeleetronics. We summarize approaches for control that modify their structural and chemical en- vironment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.